Biology Reference
In-Depth Information
61. van Thor JJ, Gensch T, Hellingwerf KJ et al (2002) Phototransformation of green fluorescent
protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol
62. Ai HW, Shaner NC, Cheng Z et al (2007) Exploration of new chromophore structures leads to
the identification of improved blue fluorescent proteins. Biochemistry 46:5904-5910
63. Adam V, Nienhaus K, Bourgeois D et al (2009) Structural basis of enhanced photoconversion
yield in green fluorescent protein-like protein Dendra2. Biochemistry 48:4905-4915
64. Shcherbo D, Merzlyak EM, Chepurnykh TV et al (2007) Bright far-red fluorescent protein for
whole-body imaging. Nat Methods 4:741-746
65. Piatkevich KD, Hulit J, Subach OM et al (2010) Monomeric red fluorescent proteins with a
large Stokes shift. Proc Natl Acad Sci U S A 107:5369-5374
66. Wachter RM, Elsliger MA, Kallio K et al (1998) Structural basis of spectral shifts in the
yellow-emission variants of green fluorescent protein. Structure 6:1267-1277
67. Shagin DA, Barsova EV, Yanushevich YG et al (2004) GFP-like proteins as ubiquitous
metazoan superfamily: evolution of functional features and structural complexity. Mol Biol
Evol 21:841-850
68. Petersen J, Wilmann PG, Beddoe T et al (2003) The 2.0- ˚ crystal structure of eqFP611, a far
red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem
69. Loos DC, Habuchi S, Flors C et al (2006) Photoconversion in the red fluorescent protein from
the sea anemone Entacmaea quadricolor: is cis-trans isomerization involved? J Am Chem Soc
70. Nienhaus K, Nar H, Heilker R et al (2008) Trans-cis isomerization is responsible for the red-
shifted fluorescence in variants of the red fluorescent protein eqFP611. J Am Chem Soc
71. Terskikh A, Fradkov A, Ermakova G et al (2000) “Fluorescent timer”: protein that changes
color with time. Science 290:1585-1588
72. Subach FV, Subach OM, Gundorov IS et al (2009) Monomeric fluorescent timers that change
color from blue to red report on cellular trafficking. Nat Chem Biol 5:118-126
73. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxida-
tion of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501-12504
74. Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness,
longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178-182
75. Kajihara D, Hohsaka T, Sisido M (2005) Synthesis and sequence optimization of GFP mutants
containing aromatic non-natural amino acids at the Tyr66 position. Protein Eng Des Sel
76. Goulding A, Shrestha S, Dria K et al (2008) Red fluorescent protein variants with incorporated
non-natural amino acid analogues. Protein Eng Des Sel 21:101-106
77. Subach OM, Gundorov IS, Yoshimura M et al (2008) Conversion of red fluorescent protein
into a bright blue probe. Chem Biol 15:1116-1124
78. Subach OM, Malashkevich VN, Zencheck WD et al (2010) Structural characterization of
acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent
proteins. Chem Biol 17:333-341
79. Henderson JN, Gepshtein R, Heenan JR et al (2009) Structure and mechanism of the photo-
activatable green fluorescent protein. J Am Chem Soc 131:4176-4177
80. Ando R, Hama H, Yamamoto-Hino M et al (2002) An optical marker based on the UV-
induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA
81. Nienhaus K, Nienhaus GU, Wiedenmann J et al (2005) Structural basis for photo-induced
protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad
Sci U S A 102:9156-9159
Search WWH ::

Custom Search