Biology Reference
In-Depth Information
39. Langhojer F, Dimler F, Jung G, Brixner T (2009) Ultrafast photoconversion of the green fluo-
rescent protein studied by accumulative femtosecond spectroscopy. Biophys J 96:2763-2770
40. Habuchi S, Cotlet M, Gensch T, Bednarz T, Haber-Pohlmeier S, Rozenski J, Dirix G,
Michiels J, Vanderleyden J, Heberle J, De Schryver FC, Hofkens J (2005) Evidence for
the isomerization and decarboxylation in the photoconversion of the red fluorescent protein
DsRed. J Am Chem Soc 127:8977-8984
41. He X, Bell AF, Tonge P (2002) Isotopic labeling and normal-mode analysis of a model green
fluorescent protein chromophore. J Phys Chem B 106:6056-6066
42. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and
materials science. Annu Rev Phys Chem 48:213-242
43. Anderson JM, Kocji JK (1970) Manganese(III) complexes in oxidative decarboxylation of
acids. J Am Chem Soc 92:2450-2460
44. Kolbe H (1849) Untersuchungen uber die Elektrolyse organischer Verbindungen. Ann Chem
Pharm 69:257-294
45. Cao W, Ye X, Sjodin T, Christian JF, Demidov AA, Berezhna S, Wang W, Barrick D, Sage
JT, Champion PM (2004) Investigations of photolysis and rebinding kinetics in myoglobin
using proximal ligand replacements. Biochemistry 43:11109-11117
46. Ye X, Yu A, Georgiev GY, Gruia F, Ionascu D, Cao W, Sage JT, Champion PM (2005) CO
rebinding to protoheme: investigations of the proximal and distal contributions to the
geminate rebinding barrier. J Am Chem Soc 127:5854-5861
47. Zeng W, Silvernail NJ, Wharton DC, Georgiev GY, Leu BM, Scheidt WR, Zhao J, Sturhahn
W, Alp EE, Sage JT (2005) Direct probe of iron vibrations elucidates NO activation of heme
proteins. J Am Chem Soc 127:11200-11201
48. Lossau H, Kummer A, Heinecke R, Pollinger-Dammer F, Kompa C, Bieser G, Jonsson T,
Silva CM, Yang MM, Youvan DC, Michel-Beyerle ME (1996) Time-resolved spectroscopy
of wild-type and mutant green fluorescent proteins reveals excited state deprotonation
consistent with fluorophore-protein interactions. Chem Phys 213:1-16
49. Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated
tunneling. Proc Natl Acad Sci USA 71:3640-3644
50. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys
Acta 811:265-322
51. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron
transfer. Nature 355:796-802
52. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron
tunnelling in biological oxidation-reduction. Nature 402:47-52
53. McAnaney TB, Zeng W, Doe CF, Bhanji N, Wakelin S, Pearson DS, Abbyad P, Shi X, Boxer
SG, Bagshaw CR (2005) Protonation, photobleaching, and photoactivation of yellow fluo-
rescent protein (YFP 10C): a unifying mechanism. Biochemistry 44:5510-5524
54. Henderson JN, Gepshtein R, Heenan JR, Kallio K, Huppert D, Remington SJ (2009)
Structure and mechanism of the photoactivatable green fluorescent protein. J Am Chem
Soc 131:4176-4177
55. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photo-
activation: following protein dynamics in living cells. Nat Cell Biol Suppl:S7-S14
56. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein
markers in living cells. Science 300:87-91
57. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein move-
ments using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc
58. Chudakov DM, Lukyanov S, Lukyanov KA (2007b) Using photoactivatable fluorescent
protein Dendra2 to track protein movement. Biotechniques 42:553, 555, 557 passim
59. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA
(2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol
Search WWH ::

Custom Search