Biology Reference
In-Depth Information
1. Bell AF et al (2001) Structure of green fluorescent protein chromophores probed by Raman
spectroscopy. Biochemistry 40(29):8619-8619
2. van Thor JJ et al (1998) Characterization of the photoconversion of green fluorescent protein
with FTIR spectroscopy. Biochemistry 37(48):16915-16921
3. van Thor JJ et al (2005) Structural events in the photocycle of green fluorescent protein. J Phys
Chem B 109(33):16099-16108
4. Luin S et al (2009) Raman study of chromophore states in photochromic fluorescent proteins.
J Am Chem Soc 131(1):96-103
5. Time-Resolved IR (TRIR) Absorption Spectroscopy
+for+Science+Facility/Molecular+Structure+and+Dynamics/Techniques/14374.aspx , Accessed
on August 16, 2011
6. Zscherp C, Heberle J (1997) Infrared difference spectra of the intermediates L, M, N, and O
of the bacteriorhodopsin photoreaction obtained by time-resolved attenuated total reflection
spectroscopy. J Phys Chem B 101(49):10542-10547
7. Bell AF et al (2003) Light-driven decarboxylation of wild-type green fluorescent protein.
J Am Chem Soc 125(23):6919-26
8. Habuchi S et al (2005) Evidence for the isomerization and decarboxylation in the photo-
conversion of the red fluorescent protein DsRed. J Am Chem Soc 127(25):8977-8984
9. Schellenberg P et al (2001) Resonance Raman scattering by the green fluorescent protein and
an analogue of its chromophore. J Phys Chem B 105(22):5316-5322
10. Talley CE et al (2005) Surface-enhanced Raman scattering from individual au nanoparticles
and nanoparticle dimer substrates. Nano Lett 5(8):1569-74
11. Kneipp J et al (2009) Optical probing and imaging of live cells using SERS labels. J Raman
Spectrosc 40(1):1-5
12. Kneipp J et al (2006) In vivo molecular probing of cellular compartments with gold nano-
particles and nanoaggregates. Nano Lett 6(10):2225-2231
13. Tozzini V et al (2003) The low frequency vibrational modes of green fluorescent proteins.
ChemPhys 287:33-42
14. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-
enhanced Raman scattering. Science 275(5303):1102-1106
15. Habuchi S et al (2003) Single-molecule surface enhanced resonance Raman spectroscopy of
the enhanced green fluorescent protein. J Am Chem Soc 125(28):8446-8447
16. Freudiger CW et al (2008) Label-free biomedical imaging with high sensitivity by stimulated
Raman scattering microscopy. Science 322(5909):1857-1861
17. Nienhaus GU (2010) The “Wiggling and Jiggling of Atoms” leading to excited-state proton
transfer in green fluorescent protein. Chemphyschem 11(5):971-974
18. Kruglik SG et al (2002) Resonance CARS study of the structure of “Green” and “Red” chromo-
phores within the red fluorescent protein DsRed. J Am Chem Soc 124(37):10992-10993
19. Cinelli RAG et al (2001) Coherent dynamics of photoexcited green fluorescent proteins. Phys
Rev Lett 86(15):3439-3442
20. Usman A et al (2005) Excited-state structure determination of the green fluorescent protein
chromophore. J Am Chem Soc 127(32):11214-5
21. Thar J, Reckien W, Kirchner B (2007) Car-Parrinello molecular dynamics simulations and
biological systems. In: Reiher M (ed) Atomistic approaches in modern biology. Springer,
Berlin, pp 133-171
22. Ceperley D (1978) Ground state of the fermion one-component plasma: a Monte Carlo study
in two and three dimensions. Phys Rev B 18(7):3126
23. Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method.
Phys Rev Lett 45(7):566
24. Tanatar B, Ceperley DM (1989) Ground state of the two-dimensional electron gas. Phys Rev B
Search WWH ::

Custom Search