Environmental Engineering Reference
In-Depth Information
Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte
JF, Sylvestre M (2007) Expression of bacterial biphe-
nyl-chlorobiphenyl dioxygenase genes in tobacco
plants. Biotechnol Bioeng 97:496-505
Mohanty M, Patra HK (2012) Phytoremediation potential
of paragrass—an in-situ approach for chromium con-
taminated soil. Int J Phytoremed 14:796-805
Mulligana CN, Yongb RN, Gibbsc BF (2001) Remedia-
tion technologies for metal-contaminated soils and
groundwater: an evaluation. Eng Geol 60:193-207
Narasimhan K, Basheer C, Bajic VB, Swarup S (2003)
Enhancement of plant-microbe interactions using a
rhizosphere metabolomics-driven approach and its
application in the removal of polychlorinated biphe-
nyls. Plant Physiol 132:146-153
Newman LA, Strand SE, Choe N, Duffy J, Ekuan G,
Ruszaj M, Shurtleff BB, Wilmoth J, Heilman P, Gor-
don MP (1997) Uptake and biotransformation of
trichloroethylene by hybrid poplars. Environ Sci Tech-
nol 31:1062-1067
Novakova M, Mackova M, Chrastilova Z, Viktorova J,
Szekeres M, Demnerova K, Macek T (2009) Clon-
ing the bacterial bphC gene into Nicotiana tabacum
to improve the efficiency of PCB phytoremediation.
Biotechnol Bioeng 102:29-37
Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expres-
sion of mouse metallothionein-1-gene confers cad-
mium resistance in transgenic tobacco plants. Plant
Mol Biol 24:341-351
Paulose B, Kandasamy S, Dhankher OP (2010) Expres-
sion profiling of Crambe abyssinica under arsenate
stress identifies genes and gene networks involved
in arsenic metabolism and detoxification. BMC Plant
Biol 10:108
Pilon-Smits EAH, Hwang S, Mel lytel C, Zhu Y, Tai
JC, Bravo RC, et al. (1999) Overexpression of ATP
sulfurylase in Indian mustard leads to increased sel-
enate uptake, reduction and tolerance. Plant Physiol
119:123-132
Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames
C, Lacombe B, Ferrand M, Loudet O, Berthomieu
P, Richard O (2012) Natural variation at the FRD3
MATE transporter locus reveals cross-talk between Fe
homeostasis and Zn tolerance in Arabidopsis thaliana .
PLoS Genet 8:e1003120
Pratas J, Favas PJ, D'Souza R, Varun M, Paul MS (2013)
Phytoremedial assessment of flora tolerant to heavy
metals in the contaminated soils of an abandoned Pb
mine in Central Portugal. Chemosphere 90:2216-2225
Rao MR, Halfhill MD, Abercrombie LG, Ranjan P, Aber-
crombie JM, Gouffon JS, Saxton AM, Stewart CNJ
(2009) Phytoremediation and phytosensing of chemi-
cal contaminants, RDX and TNT: identification of the
required target genes. Funct Integr Genom 9:537-547
Robinson NJ, Proctor CM, Connolly EL, Guerinot ML
(1999) A ferric chelate reductase for iron uptake from
soils. Nature 397:694-697
Reeves RD, Brooks RR (1983) Hyperaccumulation of
lead and zinc by two metallophytes from mining areas
in Central Europe. Environ Pollut Ser A 31:277-285
Ruiz ON, Daniell H (2009) Genetic engineering to
enhance mercury phytoremediation. Curr Opin Bio-
technol 20:213-219
Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phy-
toremediation of organomercurials via the chloroplast
genetic engineering. Plant Physiol 132:1344-1352
Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H
(2011) Metallothionein expression in chloroplasts
enhances mercury accumulation and phytoremedia-
tion capability. Plant Biotechnol J 9:609-617
Sabat SC (1996) Copper ion inhibition of electron trans-
port activity in sodium chloride washed Photosystem
II particle is partially prevented by calcium ion. Z
Naturforsch 51:179-184
Saiyood S, Inthorn D, Vangnai AS, Thiravetyan P (2013)
Phytoremediation of bisphenol A and total dissolved
solids by the mangrove plant, Bruguiera gymnorhiza .
Int J Phytoremed 15:427-438
Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ens-
ley BD, Chet I, Raskin I (1995) Phtoremediation: a
novel strategy for the removal of toxic metals from the
environment using plants. Nat Biotechnol 13:468-474
Samuelsen AI, Martin RC, Mok DWS, Machteld CM
(1998) Expression of the yeast FRE genes in trans-
genic tobacco. Plant Physiol 118:51-58
Schnoor JL (1997) Phytoremediation. GWRTAC. The
University of Iowa Department of Civil and Environ-
mental Engineering Center for Global and Regional
Environmental Research, Iowa
Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Car-
riera LH (1995) Phytoremediation: an emerging tech-
nology for contaminated soils. Environ Sci Technol
29:318-323
Shaw LJ, Burns RG (2007) Influence of the rhizosphere
on the biodegradation of organic xenobiotics—a
case study with 2,4-dichlorophenoxyacetic acid.
In: Heipieper HJ (ed) Bioremediation of soils con-
taminated with aromatic compounds. NATO science
series, vol 76. Springer, Netherland, pp 5-30
Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and
biochemical effects of mercury in the plant Bacopa
monnieri . Environ Toxicol Water Qual 11:105-112
Smreczak B, Maliszewska-Kordybach B (2005) The effi-
ciency of rhizosphere bioremediation of soils from
industrial areas contaminated with polycyclic aro-
matic hydrocarbons (PAHs). In: Izabella Bojakowska
SW, Panagiotis Balabanis (eds) Valorisation of the
environment in the areas exposed to long term indus-
trial and mining activities. Polish Geological Insitute,
Ustroń, pp 74-76
Souza FA, Dziedzic M, Cubas SA, Maranho LT (2013)
Restoration of polluted waters by phytoremediation
using Myriophyllum aquaticum (Vell.) Verdc., Halor-
agaceae. J Environ Manage 120:5-9
Sun Y, Zhou Q, Xu Y, Wang L, Liang X (2011) Phy-
toremediation for co-contaminated soils of benzo[a]
pyrene (B[a]P) and heavy metals using ornamental
plant Tagetes patula . J Hazard Mater 186:2075-2082
Tan J, Wang J, Chai T, Zhang Y, Feng S, Li Y, Zhao H, H
HL, Chai X (2013) Functional analyses of TaHMA2,
Search WWH ::




Custom Search