Biomedical Engineering Reference
In-Depth Information
The SEC-NMR-MALDI method consists in injecting a copolymer sample in a
size-exclusion chromatography (SEC) apparatus, in collecting 60-90 fractions and
in analyzing selected fractions by NMR and by MALDI. The SEC-NMR-MALDI
method was applied to a copolymer with units of methyl methacrylate (MMA) and
butyl-acrylate (BA for brief) reacted at high conversion. Figure 10.10 reports the
bivariate distribution of chain sizes and compositions for the MMA-BA copolymer
[ 98 ]. It can be seen that the average molar fraction of MMA in the copolymer,
c MMA ,
changes. At 300 kDa,
c MMA
D 0:30
, whereas at 200 kDa,
c MMA
D 0:35
.Atlower
masses
c MMA increases to 0.40, 0.50 and even higher values. The results reported
in Fig. 10.10 demonstrate beyond any possible doubt that the SEC-NMR-MALDI
method is very powerful.
References
1. P.C. Painter, M.M. Coleman, Fundamentals of Polymer Science , Technomic Publ., Lancaster,
1997
2. P. Rempp, E.W. Merril, Polymer Synthesis, 2nd edition , Huthig-Wepf, Basel, 1991
3. R.H. Boyd, P.J. Phillips, The Science of Polymer Molecules , Cambridge University Press,
NY, 1993
4. G.G. Odian, Principles of Polymerization, 4th edition , page 437, Wiley-VCH, NY, 2004
5. S. Jouenne, J.A. Gonzalez-Leon, A.V. Ruzette, P. Lodefier, S. Tence-Girault, L. Leibler, Macro-
molecules 40, 2432-2442 (2007)
6. A. Zargar, F.J. Schork, Ind. Eng. Chem. Res. 48, 4245-4253 (2009)
7. M.R. Rivera, A.A. Rodriguez-Hernandez, N. Hernandez, P. Castillo, E. Saldivar, L. Rios, Ind.
Eng. Chem. Res. 44, 2792-2801 (2005)
8. A. Krallis, D. Meimaroglou, C. Kiparissides, Chem. Eng. Sci. 63, 4342-4360 (2008)
9. A. Keramopoulos, C. Kiparissides, Macromolecules 35, 4155-4166 (2002)
10. D.S. Achilias, C. Kiparissides, Polymer 35, 1714-1721 (1994)
11. S.I. Kuchanov, Adv. Polym. Sci. 103, 3-101 (1992)
12. A.S. Brar, K. Dutta, Macromol. Chem. Phys. 199, 2005-2015 (1998)
13. A.S. Brar, S. Charan, J. Polym. Sci. Part A Polym. Chem. 34, 333-339 (1996)
14. A.S. Brar, J. Kaur, Eur. Polym. J. 41 2278-2289 (2005)
15. A.S. Brar, A. Sunita, Eur. Polym. J. 27, 17-20 (1991)
16. S. Hooda, A.S. Brar, A.K. Goyal, J. Mol. Str. 828, 25-37 (2007)
17. J.C.J.F. Tacx, J.L. Ammerdorffer, A.L. German, Polymer 29, 2087-2095 (1988)
18. W.H. Stockmayer, J. Chem. Phys. 13, 199-207 (1945)
19. J.C.J.F. Tacx, H.N. Linssen, A.L. German, J. Polym. Sci. Part A Polym. Chem. 26, 61-69
(1988)
20. H.N. Cheng, S.B. Tam, L.J. Kasehagen, Macromolecules 25, 3779-3785 (1992)
21. R. Landry, A. Penlidis, T.A. Duever, J. Polym. Sci. A Polym. Chem. 38, 2319-2332 (2000)
22. S. Losio, P. Stagnaro, T. Motta, M.C. Sacchi, F. Piemontesi, M. Galimberti, Macromolecules
41, 1104-1111 (2008)
23. I. Tritto, L. Boggioni, J.C. Jansen, K. Thorshaug, M.C. Sacchi, D.R. Ferro, Macromolecules
35, 616-623 (2002)
24. K. Yamada, T. Nakano, Y. Okamoto, Macromolecules 31, 7598-7605 (1998)
25. N. Stribeck, Polymer 33, 2792-2795 (1992)
26. W.K. Czerwinski, Polymer 38, 1381-1385 (1997)
27. H.J. Harwood, W.M. Ritchey, J. Polym. Sci. Part B Polym. Lett. 2, 601-607 (1964)
28. W. Ring, J. Polym. Sci. Part B Polym. Lett. 1, 323-327 (1963)
29. G. Wilczek-Vera, P.O. Danis, A. Eisenberg, Macromolecules 29, 4036-4044 (1996)
Search WWH ::




Custom Search