Information Technology Reference
In-Depth Information
ʣ )
Representation Theorems with Respect to (
ʣ )isagraded consequence relation.
Proof. (GC1) is proved as in Theorem 3.1. (GC2) is obtained using (i) and Lemma 3.8.
(GC3) inf ʲ Z gr ( X
Theorem 3.3. For any
{
T i
}
I ,
|≈
in the sense of (
i
|≈ ʲ
|≈ ʱ
)
gr ( X
Z
)
Z r [ i I { x X T i ( x )
r [ i I { x X Z T i ( x )
=inf
ʲ
I T i (
ʲ
)
}
]
I T i (
ʱ
)
}
]
= r [ ʲ Z { i I ( x X T i ( x )
r [ i I { x X Z T i ( x )
I T i (
ʲ
))
}
]
I T i (
ʱ
)
}
] (Lemma 3.5)
= r [ i I { ʲ Z ( x X T i ( x )
r [ i I { x X Z T i ( x )
I T i (
ʲ
))
}
]
I T i (
ʱ
)
}
] (Lemma 3.6)
r [ i I { ʲ Z ( x X T i ( x )
r [ i I { x X Z T i ( x )
I T i (
ʲ
))
}
]
I T i (
ʱ
)
}
](Corollary 3.1)
= r [ i I ( x X T i ( x )
I ʲ Z T i (
r [ i I { x X Z T i ( x )
ʲ
))
}
]
I T i (
ʱ
)
}
] (by(vii))...(1)
Also we obtain, r [ i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
I T i (
ʱ
)
}
]]
r [ i I { x X T i ( x )
I T i (
ʱ
)
}
] (by(vi) andLemma3.8).
...(2)
Now i I ( x X T i ( x )
I ʲ Z T i (
}∗ I i I { x X Z T i ( x )
ʲ
))
I T i (
ʱ
)
}
I i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
I T i (
ʱ
)
}
] (Lemma 3.2)
I i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
I T i (
ʱ
)
}
]. (Lemma 3.9)
i.e., r [ i I ( x X T i ( x )
I ʲ Z T i (
r [ i I { x X Z T i ( x )
ʲ
))
}
]
I T i (
ʱ
)
}
]
r [ i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
I T i (
ʱ
)
}
]]. (Lemma3.7)...(3)
i I ( x X T i ( x )
I ʲ Z T i (
}ↆ e i I ( x X T i ( x )
I ʲ Z T i (
ʲ
))
ʲ
))
}
. (Lemma 3.10)
So, r [ i I ( x X T i ( x )
I ʲ Z T i (
r [ i I ( x X T i ( x )
I ʲ Z T i (
ʲ
))
}
]
ʲ
))
}
].
Thuswehave, r [ i I ( x X T i ( x )
I ʲ Z T i (
r [ i I { x X Z T i ( x )
ʲ
))
}
]
I T i (
ʱ
)
}
]
r [ i I ( x X T i ( x )
I ʲ Z T i (
r [ i I { x X Z T i ( x )
ʲ
))
}
]
I T i (
ʱ
)
}
]
r [ i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
I T i (
ʱ
)
}
]] (by 3)
r [ i I { x X T i ( x )
I T i (
ʱ
)
}
] (by (2)).
Hence (GC3) is proved.
Theorem 3.4. For any graded consequence relation
|∼
there is a collection of interval-
ʣ ) coincides with
valued fuzzy sets such that
|≈
generated in the sense of (
|∼
.
Proof. Given a graded consequence relation
|∼
,let
{
T X } X P ( F ) be such that T X (ʱ) =
|∼ ʱ) = r [ Y P ( F ) { x X T Y ( x ) i T Y (ʱ) } ].
[ gr ( X
|∼ ʱ)] BIR , and we want to show gr ( X
Arguing as Theorem 3.2 we have, T X (
ʲ
)
I Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]
e Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)] (Lemma 3.9)
r ( T X (
ʲ
))
r (
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)])
r (
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]) ...(1)
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]
e X Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]
...(2)
Following the proof of Theorem 3.2, for X
Y ,wehave
ʱ X T Y (
ʱ
)
I T Y (
ʲ
) = T Y (
ʲ
).
From (2) and Lemma 3.10,
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]
e X Y T Y (
ʲ
) = T X (
ʲ
).
Thus, r ( T X (
ʲ
)) = r (
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]) = gr ( X
|∼ ʱ
).
U ,∗ I ,→ I , [0 , 0] , [1 , 1] , r , as mentioned in Remark 1, is
taken; only the differences are: (i) U is endowed with both the lattice order relations I
and
Here the same structure
e , and (ii) a function r : U [0 , 1], different from l , is considered here.
Let us present, below, a diagram to visualize the beauty and purpose of dealing with
two lattice structures over the same domain. We consider a linear scale D and intervals
over D . We consider D =
{
3 , 5 , 7 , 9
}
and I D =
{
[ a , b ] : a
b and a , b
D
}
.
Search WWH ::




Custom Search