Information Technology Reference
In-Depth Information
Representation Theorems with Respect to (
ʣ
)
Theorem 3.1. For any
{
T i } i I ,
|≈
in the sense of (
ʣ
)isagraded consequence relation.
X , x X T i ( x )
Proof. (GC1) For
ʱ
I T i (
ʱ
).So,using (v) we have gr ( X
|≈ ʱ
) =1.
Y , x Y T i ( x )
I x X T i ( x ). Hence by (i) GC2 is immediate.
(GC2) For X
|≈ ʲ
|≈ ʱ
(GC3) inf
Z gr ( X
)
gr ( X
Z
)
ʲ
Z l [ i I { x X T i ( x )
l [ i I { x X Z T i ( x )
}
}
=inf
I T i (
ʲ
)
]
I T i (
ʱ
)
]
ʲ
= l [ ʲ Z { i I ( x X T i ( x ) I T i (ʲ)) } ]
l [ i I { x X Z T i ( x ) I T i (ʱ) } ] (Lemma 3.1)
= l [ i I { ʲ Z ( x X T i ( x ) I T i (ʲ)) } ]
l [ i I { x X Z T i ( x ) I T i (ʱ) } ] (Lemma 3.3)
= l [ i I ( x X T i ( x )
I ʲ Z T i (
l [ i I { x X Z T i ( x )
ʲ
))
}
]
I T i (
ʱ
)
}
] (by(vii))...(1)
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
Now for each T i ,
ʲ
)
I T i (
ʱ
)
}
{ x X T i ( x )
I ʲ Z T i (
[( x X T i ( x )) ( x Z T i ( x ))]
=
ʲ
)
}∗ I {
I T i (
ʱ
)
}
I { x X T i ( x )
I T i (
ʱ
)
}
. (by (vi)).
Therefore, i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
I T i (
ʱ
)
}
]
I i I [ x X T i ( x )
I T i (
ʱ
)].
...(2)
Also, i I [
{ x X T i ( x )
I ʲ Z T i (
I i I [
{ x X Z T i ( x )
ʲ
)
}
]
I T i (
ʱ
)
}
]
I i I [
{ x X T i ( x )
I ʲ Z T i (
}∗ I { x X Z T i ( x )
ʲ
)
i T i (
ʱ
)
}
] (Lemma 3.2)
I i I [ x X T i ( x )
I T i (
ʱ
)]
(by (2))
l [ i I ( x X T i ( x )
I ʲ Z T i (
l [ i I { x X Z T i ( x )
ʲ
))
}
]
I T i (
ʱ
)
}
]
l [ i I { x X T i ( x )
I T i (
ʱ
)
}
] (Lemma 3.4 as
I is t-representable)
...(3)
Hence from (1) and (3) we have, inf ʲ Z gr ( X
|≈ ʲ
)
gr ( X
Z
|≈ ʱ
)
gr ( X
|≈ ʱ
).
Theorem 3.2. For any graded consequence relation
|∼
there is a collection of interval-
valued fuzzy sets such that
|≈
generated in the sense of (
ʣ
) coincides with
|∼
.
|∼
{
} X P ( F )
Proof. Given
,agraded consequence relation, let us consider the collection
T X
of interval-valued fuzzy sets over formulae such that T X (
)] BIR ,where[ x ] BIR
represents the best interval representation [3] of x ,i.e.theinterval[ x , x ].
We want to prove gr ( X
ʱ
)=[ gr ( X
|∼ ʱ
|∼ ʱ) = l [ Y P ( F ) { x X T Y ( x ) I T Y (ʱ) } ].
By (GC3) and Lemma 3.1, we have l ( T Y (ʲ))
l ( ʱ X T Y (ʱ)).
As T Y 'saredegenerate intervals by proposition 4.1 of [16] every true identity express-
ible in [0, 1] is expressible in U .So, T X Y (ʲ) I ʱ X T Y (ʱ) I T Y (ʲ). Then following
the proof in [7] we can show, T X (
l ( T X Y (ʲ))
ʲ
)
I Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)] ...(i)
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]
I X Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)] ...(ii)
Now for X
Y ,by(GC2), T X (
ʱ
)
I T Y (
ʱ
). Then by (GC1) we have
[1 , 1] =
ʱ X T X (
ʱ
)
I ʱ X T Y (
ʱ
).i.e.
ʱ X T Y (
ʱ
)
I T Y (
ʲ
) = T Y (
ʲ
).
Hence (ii) becomes
Y P ( F ) [
ʱ X T Y (
ʱ
)
I T Y (
ʲ
)]
I X Y P ( F ) T Y (
ʲ
) = T X (
ʲ
) ...(iii)
Combining (i) and (iii) we have gr ( X
].
Remark 1. In this new context the meta-level algebraic structuremaybeviewedas
|∼ ʲ
) = l [
Y P ( F ) {∧ ʱ X T Y (
ʱ
)
I T Y (
ʲ
)
}
U ,∗ I ,→ I , [0 , 0] , [1 , 1] , l , a complete residuated lattice with a function l : U [0 , 1].
The structure
U ,∗ I ,→ I , [0 , 0] , [1 , 1] , l is formed out of a complete residuated lattice
([0 , 1] ,
,
, 0 , 1). Specifically, the adjoint pair (
I ,
I ) is defined in terms of the adjoint
pair (
,
).
 
Search WWH ::




Custom Search