Information Technology Reference
In-Depth Information
( iii ) We already have V (PS 3 )
|
=LO( u )from( ii ). So it is sucient to prove
that
y ( y
u
∧¬
( y =
→∃
z ( z
y
z
y =
=1 , 5
)
))
i.e., for any y
V (PS 3 ) if
y
u
∧¬
( y =
)
∈{
1 , 1 / 2
}
then
z ( z
y
z
y =
. Now by definition and the fact that BQ ˕ hold in V (PS 3 ) for all
negation-free formulas ˕ ,
)
∈{
1 , 1 / 2
}
=
t∈ dom( y )
y
u
=
t ( t
y
t
u )
( y ( t )
t
u
)
So,
y
u
∈{
1 , 1 / 2
}
if and only if for any t
dom( y )if y ( t )
=0then
t
u
= 0, i.e., by Theorem 10 it can be concluded that t is ʲ -like for some
ʲ
ʱ . Again,
=
z∈ V (PS 3 )
¬
( y =
z ( z
y )
( y ( t )
z = t
)
=
)
t∈ dom( y )
Therefore
¬
( y =
)
∈{
1 , 1 / 2
}
if and only if there exists t
dom( y ) such that
y ( t )
∈{
1 , 1 / 2
}
.
Hence
y
u
∧¬
( y =
)
∈{
1 , 1 / 2
}
if and only if there exists t
dom( y )
such that y ( t )
∈{
1 , 1 / 2
}
and for each t
dom( y )if y ( t )
∈{
1 , 1 / 2
}
then t is ʲ -like
for some ʲ
ʱ .
Let us now find the value of
z ( z
y
z
y =
)
assuming
y
u
∧¬
( y =
)
∈{
1 , 1 / 2
}
.Let
ʳ =min
{
ʲ
ORD
|
there exists t
dom( y ) such that
y ( t )
∈{
1 , 1 / 2
}
and t is ʲ -like
}
.
1. There exists t
dom( y ) such that y ( t )
By our assumption, ʳ
∈{
1 , 1 / 2
}
and t is ʳ -like.
= ∃z ( z ∈ y ∧¬∃w ( w ∈ z ∧ w ∈ y ))
t ∈ y ∧¬∃w ( w ∈ t ∧ w ∈ y ))
=
t∈ dom( y )
z ( z
y
z
y =
)
( y ( t ) t = t ) (
w∈ dom( t )
( t ( w ) w ∈ y ))
[
w∈ dom( t )
( y ( t )
t = t
( t ( w )
))]
)
( y ( t )
w = t
t∈ dom( y )
[
w∈ dom( t )
( t ( w )
))] .
1 / 2
( y ( t )
w = t
t∈ dom( y )
5 Since PS 3 satisfies the deductive principle: (( a ∧ b ) ⃒ c )=( a ⃒ ( b ⃒ c )).
 
Search WWH ::




Custom Search