what-when-how
In Depth Tutorials and Information
type I in a patient with the Ehlers-Danlos syndrome type VII.
J Biol Chem 1980;255(18):8887-93.
[149]
Vranka JA, Sakai LY, Bachinger HP. Prolyl 3-hydroxylase 1,
enzyme characterization and identiication of a novel family of
enzymes. J Biol Chem 2004;279(22):23615-21.
[133]
Cabral WA, Makareeva E, Colige A, Letocha AD, Ty JM,
Yeowell HN, et al. Mutations near amino end of alpha 1(I) col-
lagen cause combined osteogenesis imperfecta / Ehlers-Danlos
syndrome by interference with N-propeptide processing. J Biol
Chem 2005;280(19):19259-69.
[150]
Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K,
Ishikawa Y, et  al. Prolyl 3-hydroxylase 1 null mice display
abnormalities in ibrillar collagen-rich tissues such as tendons,
skin, and bones. J Biol Chem 2010;285(22):17253-62.
[134]
Asharani PV, Keupp K, Semler O, Wang WS, Li Y, Thiele H,
et  al. Attenuated BMP1 function compromises osteogenesis,
leading to bone fragility in humans and zebraish. Am J Hum
Genet 2012;90(4):661-74.
[151]
Chang W, Barnes AM, Cabral WA, Bodurtha JN, Marini JC.
Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the
endoplasmic reticulum collagen prolyl 3-hydroxylation complex.
Hum Mol Genet 2010;19(2):223-34.
[135]
Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan
TE, Makareeva E, et al. COL1 C-propeptide cleavage site muta-
tions cause high bone mass osteogenesis imperfecta. Hum
Mutat 2011;32(6):598-609.
[152]
Bachinger HP, Bruckner P, Timpl R, Prockop DJ, Engel J. Folding
mechanism of the triple helix in type-III collagen and type-III
pN-collagen. Role of disulide bridges and peptide bond isomeri-
zation. Eur J Biochem 1980;106(2):619-32.
[136]
van der Slot AJ, Zuurmond AM, Bardoel AF, Wijmenga C,
Pruijs HE, Sillence DO, et  al. Identiication of PLOD2 as telo-
peptide lysyl hydroxylase, an important enzyme in ibrosis.
J Biol Chem 2003;278(42):40967-72.
[153]
Steinmann B, Bruckner P, Superti-Furga A. Cyclosporin A
slows collagen triple-helix formation in vivo: indirect evidence
for a physiologic role of peptidyl-prolyl cis-trans-isomerase.
J Biol Chem 1991;266(2):1299-303.
[137]
Shaheen R, Al-Owain M, Faqeih E, Al-Hashmi N, Awaji A,
Al-Zayed Z, et al. Mutations in FKBP10 cause both Bruck syn-
drome and isolated osteogenesis imperfecta in humans. Am
J Med Genet A 2011;155A(6):1448-52.
[154]
Smith T, Ferreira LR, Hebert C, Norris K, Sauk JJ. Hsp47 and
cyclophilin B traverse the endoplasmic reticulum with procolla-
gen into pre-Golgi intermediate vesicles. A role for Hsp47 and
cyclophilin B in the export of procollagen from the endoplasmic
reticulum. J Biol Chem 1995;270(31):18323-28.
[138]
Hyry M, Lantto J, Myllyharju J. Missense mutations that cause
Bruck syndrome affect enzymatic activity, folding, and oligo-
merization of lysyl hydroxylase 2. J Biol Chem 2009;284(45):
30917-24.
[155]
Horibe T, Yosho C, Okada S, Tsukamoto M, Nagai H, Hagiwara
Y, et al. The chaperone activity of protein disulide isomerase is
affected by cyclophilin B and cyclosporin A in vitro. J Biochem
2002;132(3):401-7.
[139]
Meiri D, Tazat K, Cohen-Peer R, Farchi-Pisanty O, Aviezer-Hagai K,
Avni A, et  al. Involvement of Arabidopsis ROF2 (FKBP65) in ther-
motolerance. Plant Mol Biol 2010;72(1-2):191-203.
[156]
Meunier L, Usherwood YK, Chung KT, Hendershot LM. A sub-
set of chaperones and folding enzymes form multiprotein com-
plexes in endoplasmic reticulum to bind nascent proteins. Mol
Biol Cell 2002;13(12):4456-69.
[140]
Murphy LA, Ramirez EA, Trinh VT, Herman AM,
Anderson VC, Brewster JL. Endoplasmic reticulum stress or
mutation of an EF-hand Ca(2+)-binding domain directs the
FKBP65 rotamase to an ERAD-based proteolysis. Cell Stress
Chaperones 2011;16(6):607-19.
[157]
Kozlov G, Bastos-Aristizabal S, Maattanen P, Rosenauer A,
Zheng F, Killikelly A, et  al. Structural basis of cyclophilin B
binding by the calnexin / calreticulin P-domain. J Biol Chem
2010;285(46):35551-57.
[141]
Broadhead ML, Becerra SP, Choong PF, Dass CR. The applied
biochemistry of PEDF and implications for tissue homeostasis.
Growth Factors 2010;28(4):280-5.
[158]
Ishikawa Y, Vranka JA, Boudko SP, Pokidysheva E, Mizuno K,
Zientek K, et al. The mutation in cyclophilin B that causes hyper-
elastosis cutis in the American Quarter Horse does not affect
peptidyl-prolyl cis-trans isomerase activity, but shows altered
cyclophilin B-protein interactions and affects collagen folding.
J Biol Chem 2012;287(26):22253-65.
[142]
Sekiya A, Okano-Kosugi H, Yamazaki CM, Koide T. Pigment
epithelium-derived factor (PEDF) shares binding sites in col-
lagen with heparin / heparan sulfate proteoglycans. J Biol Chem
2011;286(30):26364-74.
[143]
Venturi G, Gandini A, Monti E, Dalle Carbonare L, Corradi M,
Vincenzi M, et  al. Lack of expression of SERPINF1, the gene
coding for pigment epithelium-derived factor, causes progres-
sively deforming osteogenesis imperfecta with normal type I
collagen. J Bone Miner Res 2012;27(3):723-8.
[159]
Marini JC, Cabral WA, Barnes AM. Null mutations in LEPRE1
and CRTAP cause severe recessive osteogenesis imperfecta.
Cell Tissue Res 2010;339(1):59-70.
[160]
Baldridge D, Lennington J, Weis M, Homan EP, Jiang MM,
Munivez E, et  al. Generalized connective tissue disease in
Crtap− / − mouse. PLoS One 2010;5(5):e10560.
[144]
Doll JA, Stellmach VM, Bouck NP, Bergh ARJ, Lee C,
Abramson LP, et  al. Pigment epithelium-derived factor regu-
lates the vasculature and mass of the prostate and pancreas.
Nat Med 2003;9(6):774-80.
[161]
Valli M, Barnes A, Gallanti A, Cabral W, Viglio S, Weis M,
et  al. Deiciency of CRTAP in non-lethal recessive osteo-
genesis imperfecta reduces collagen deposition into matrix.
Clin Genet 2012;82(5):453-9 doi:http://dx.doi.org/10.1111 / j.
399-0004.2011.01794.x.
[145]
Huang Q, Wang SJ, Sorenson CM, Sheibani N. PEDF-deicient
mice exhibit an enhanced rate of retinal vascular expansion and
are more sensitive to hyperoxia-mediated vessel obliteration. Exp
Eye Res 2008;87(3):226-41.
[162]
Weis MA, Hudson DM, Kim L, Scott M, Wu JJ, Eyre DR.
Location of 3-hydroxyproline residues in collagen types I, II,
III, and V / XI implies a role in ibril supramolecular assembly.
J Biol Chem 2010;285(4):2580-90.
[146]
Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ,
Travers R. Osteogenesis imperfecta type VI: a form of brittle
bone disease with a mineralization defect. J Bone Miner Res
2002;17(1):30-8.
[163]
Byers PH, Wallis GA, Willing MC. Osteogenesis imper-
fecta: translation of mutation to phenotype. J Med Genet
1991;28(7):433-42.
[147]
Park K, Lee K, Zhang B, Zhou T, He X, Gao GQ, et  al.
Identiication of a novel inhibitor of the canonical Wnt path-
way. Mol Cell Biol 2011;31(14):3038-51.
[164]
Bateman JF, Moeller I, Hannagan M, Chan D, Cole WG.
Characterization of three osteogenesis imperfecta collagen
alpha 1(I) glycine to serine mutations demonstrating a position-
dependent gradient of phenotypic severity. Biochem J 1992;288
( Pt 1 ):131-5.
[148]
Akiyama T, Dass CR, Shinoda Y, Kawano H, Tanaka S. Choong
PFM. PEDF regulates osteoclasts via osteoprotegerin and
RANKL. Biochem Biophys Res Commun 2010;391(1):789-94.
Search WWH ::




Custom Search