what-when-how
In Depth Tutorials and Information
[58] Miles CA, Bailey AJ. Thermally labile domains in the collagen
molecule. Micron 2001;32(3):325-32.
[59] Bachinger HP, Davis JM. Sequence speciic thermal stability of
the collagen triple helix. Int J Biol Macromol 1991;13(3):152-6.
[60] Makareeva E, Mertz EL, Kuznetsova NV, Sutter MB,
DeRidder AM, Cabral WA, et al. Structural heterogeneity of type I
collagen triple helix and its role in osteogenesis imperfecta. J Biol
Chem 2008;283(8):4787-98.
[61] Koide T, Nishikawa Y, Asada S, Yamazaki CM, Takahara Y,
Homma DL, et  al. Speciic recognition of the collagen triple
helix by chaperone HSP47. II. The HSP47-binding structural
motif in collagens and related proteins. J Biol Chem 2006;281(16):
11177-85.
[62] Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD,
Milgrom S, et  al. Consortium for osteogenesis imperfecta muta-
tions in the helical domain of type I collagen: regions rich in
lethal mutations align with collagen binding sites for integrins
and proteoglycans. Hum Mutat 2007;28(3):209-21.
[63] Leikina E, Mertts MV, Kuznetsova N, Leikin S. Type I collagen
is thermally unstable at body temperature. Proc Natl Acad Sci
USA 2002;99(3):1314-8.
[64] Makareeva E, Leikin S. Procollagen triple helix assembly: an
unconventional chaperone-assisted folding paradigm. PLoS
One 2007;2:10.
[65] Miles CA, Burjanadze TV, Bailey AJ. The kinetics of the thermal
denaturation of collagen in unrestrained rat tail tendon deter-
mined by differential scanning calorimetry. J Mol Biol 1995;
245(4):437-46.
[66] Persikov AV, Xu Y, Brodsky B. Equilibrium thermal transitions
of collagen model peptides. Protein Sci 2004;13(4):893-902.
[67] Xu Y. Thermal stability of collagen triple helix. Methods
Enzymol 2009;466:211-32.
[68] Burjanadze TV. New analysis of the phylogenetic change of
collagen thermostability. Biopolymers 2000;53(6):523-8.
[69] Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the
thermal stabilization of collagen molecules in ibers. Biophys J
1999;76(6):3243-52.
[70] Koide T, Nagata K. Collagen biosynthesis. Top Curr Chem
2005;247:85-114.
[71] Lamande SR, Bateman JF. Procollagen folding and assembly:
the role of endoplasmic reticulum enzymes and molecular
chaperones. Semin Cell Dev Biol 1999;10(5):455-64.
[72] Aninsen CB. Principles that govern the folding of protein
chains. Science 1973;181(96):223-30.
[73] Dill KA, Ozkan SB, Shell MS, Weikl TR. The protein folding
problem. Annu Rev Biophys 2008;37:289-316.
[74] Englander SW, Mayne L, Krishna MM. Protein folding and
misfolding: mechanism and principles. Q Rev Biophys 2007;
40(4):287-326.
[75] Cali T, Vanoni O, Molinari M. The endoplasmic reticulum:
crossroads for newly synthesized polypeptide chains. Prog
Mol Biol Transl Sci 2008;83:135-79.
[76] Clark PL. Protein folding in the cell: reshaping the folding fun-
nel. Trends Biochem Sci 2004;29(10):527-34.
[77] Hartl FU, Hayer-Hartl M. Converging concepts of protein fold-
ing in vitro and in vivo. Nat Struct Mol Biol 2009;16(6):574-81.
[78] Malhotra JD, Kaufman RJ. The endoplasmic reticulum and
the unfolded protein response. Semin Cell Dev Biol 2007;
18(6):716-31.
[79] Yoshida H. ER stress and diseases. FEBS J 2007;274(3):630-58.
[80] Makareeva E, Aviles NA, Leikin S. Chaperoning osteogen-
esis: new protein-folding disease paradigms. Trends Cell Biol
2011;21(3):168-76.
[81] Ishida Y, Nagata K. Hsp47 as a collagen-speciic molecular
chaperone. Methods Enzymol 2011;499:167-82.
[82] Koide T, Asada S, Takahara Y, Nishikawa Y, Nagata K,
Kitagawa K. Speciic recognition of the collagen triple helix by
chaperone HSP47: minimal structural requirement and spatial
molecular orientation. J Biol Chem 2006;281(6):3432-8.
[83] Ishikawa Y, Vranka J, Wirz J, Nagata K, Baechinger HP. The
rough endoplasmic reticulum-resident FK506-binding protein
FKBP65 is a molecular chaperone that interacts with collagens.
J Biol Chem 2008;283(46):31584-90.
[84] Ishikawa Y, Wirz J, Vranka JA, Nagata K, Baechinger HP.
Biochemical characterization of the prolyl 3-hydroxylase 1*car-
tilage-associated protein*cyclophilin B complex. J Biol Chem
2009;284(26):17641-47.
[85] Barnes AM, Cabral WA, Weis M, Makareeva E, Mertz EL, Leikin
S, et  al. Absence of FKBP10 in recessive type XI OI leads to
diminished collagen cross-linking and reduced collagen depo-
sition in extracellular matrix. Hum Mutat 2012;33(11):1589-98.
doi:http://dx.doi.org/10.1002 / humu.22139.
[86] Chessler SD, Byers PH. BiP binds type I procollagen pro alpha
chains with mutations in the carboxyl-terminal propeptide
synthesized by cells from patients with osteogenesis imper-
fecta. J Biol Chem 1993;268(24):18226-18233.
[87] Lamande SR, Chessler SD, Golub SB, Byers PH, Chan D, Cole
WG, et  al. Endoplasmic reticulum-mediated quality control of
type I collagen production by cells from osteogenesis imperfecta
patients with mutations in the pro alpha 1 (I) chain carboxyl-
terminal propeptide which impair subunit assembly. J Biol Chem
1995;270(15):8642-9.
[88] Fitzgerald J, Lamande SR, Bateman JF. Proteasomal degra-
dation of unassembled mutant type I collagen pro-alpha1(I)
chains. J Biol Chem 1999;274(39):27392-98.
[89] Forlino A, Kuznetsova NV, Marini JC, Leikin S. Selective reten-
tion and degradation of molecules with a single mutant
alpha1(I) chain in the Brtl IV mouse model of OI. Matrix Biol
2007;26(8):604-14.
[90] Forlino A, Tani C, Rossi A, Lupi A, Campari E, Gualeni B, et  al.
Differential expression of both extracellular and intracellular pro-
teins is involved in the lethal or nonlethal phenotypic variation
of BrtlIV, a murine model for osteogenesis imperfecta. Proteomics
2007;7(11):1877-91.
[91] Ishida Y, Yamamoto A, Kitamura A, Lamande SR, Yoshimori T,
Bateman JF, et al. Autophagic elimination of misfolded procol-
lagen aggregates in the endoplasmic reticulum as a means of
cell protection. Mol Biol Cell 2009;20(11):2744-54.
[92] Ekeowa UI, Gooptu B, Belorgey D, Hagglof P, Karlsson-Li S,
Miranda E, et al. alpha1-Antitrypsin deiciency, chronic obstruc-
tive pulmonary disease and the serpinopathies. Clin Sci (Lond)
2009;116(12):837-50.
[93] Ishida Y, Nagata K. Autophagy eliminates a speciic species of
misfolded procollagen and plays a protective role in cell sur-
vival against ER stress. Autophagy 2009;5(8):1217-9.
[94] Kojima T, Miyaishi O, Saga S, Ishiguro N, Tsutsui Y, Iwata H.
The retention of abnormal type I procollagen and correlated
expression of HSP 47 in ibroblasts from a patient with lethal
osteogenesis imperfecta. J Pathol 1998;184(2):212-8.
[95] Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GK, Abe K,
et  al. ER stress-mediated apoptosis in a new mouse model of
osteogenesis imperfecta. PLoS Genet 2008;4(2):e7.
[96] Bateman JF, Boot-Handford RP, Lamande SR. Genetic diseases
of connective tissues: cellular and extracellular effects of ECM
mutations. Nat Rev Genet 2009;10(3):173-83.
[97] Beck K, Chan VC, Shenoy N, Kirkpatrick A, Ramshaw JA,
Brodsky B. Destabilization of osteogenesis imperfecta col-
lagen-like model peptides correlates with the identity of
the residue replacing glycine. Proc Natl Acad Sci USA 2000;
97(8):4273-8.
Search WWH ::




Custom Search