what-when-how
In Depth Tutorials and Information
model has not been considered a prime contender for
explaining bone pathology caused by Gly substitutions,
because no upregulation of BiP by these mutations has
been detected. 86 BiP upregulation is a commonly used
indicator of canonical UPR signaling activation in ER
stress response to protein misfolding, 78 but the ER stress
response to misfolding of procollagen triple helix might
be different. 80 Recent studies show that aggregation of
some misfolded proteins, 171 including procollagen with
Gly substitutions, 91 might trigger a different pathway of
ER stress response, which does not involve upregulation
of BiP and activation of UPR. Severe dilation of fibroblast
ER cisternae in Brtl mouse skin 89 without BiP upregula-
tion 90 confirms that this ER stress response is likely to be
an important factor in at least some OI cases.
[3] Barnes AM, Cliang W, Morello R, Cabral WA, Weis M, Eyre
DR, et  al. Brief report: deiciency of cartilage-associated pro-
tein in recessive lethal osteogenesis imperfecta. N Engl J Med
2006;355(26):2757-64.
[4] Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S,
et  al. Prolyl 3-hydroxylase 1 deiciency causes a recessive meta-
bolic bone disorder resembling lethal / severe osteogenesis imper-
fecta. Nat Genet 2007;39(3):359-65.
[5] Choi JW, Sutor SL, Lindquist L, Evans GL, Madden BJ, Bergen
III HR, et  al. Severe osteogenesis imperfecta in cyclophilin
B-deicient mice. PLoS Genet 2009;5(12):e1000750.
[6] van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR,
Fratantoni SA, et al. PPIB mutations cause severe osteogenesis
imperfecta. Am J Hum Genet 2009;85(4):521-7.
[7] Barnes AM, Carter EM, Cabral WA, Weis M, Chang W,
Makareeva E, et  al. Lack of cyclophilin B in osteogenesis
imperfecta with normal collagen folding. N Engl J Med 2010;
362(6):521-8.
[8] Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K,
Aktas D, et al. Mutations in the gene encoding the RER protein
FKBP65 cause autosomal-recessive osteogenesis imperfecta.
Am J Hum Genet 2010;86(4):551-9.
[9] Droegemueller C, Becker D, Brunner A, Haase B, Kircher P,
Seeliger F, et al. A missense mutation in the SERPINH1 gene in
dachshunds with osteogenesis imperfecta. PloS Genet 2009;5:7.
[10] Christiansen HE, Schwarze U, Pyott SM, AlSwaid A,
Al Balwi M, Alrasheed S, et  al. Homozygosity for a missense
mutation in SERPINH1, which encodes the collagen chaperone
protein HSP47, results in severe recessive osteogenesis imper-
fecta. Am J Hum Genet 2010;86(3):389-98.
[11] Shaheen R, Al-Owain M, Sakati N, Alzayed ZS, Alkuraya FS.
FKBP10 and Bruck syndrome: phenotypic heterogeneity or call for
reclassiication? Am J Hum Genet 2010;87(2):306-7. Erratum 571.
[12] Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E,
Symoens S, et  al. Mutations in FKBP10 cause recessive osteo-
genesis imperfecta and type 1 Bruck syndrome. J Bone Miner
Res 2011;26(3):666-72. doi:http://dx.doi.org/10.1002 / jbmr.250.
[13] Ha-Vinh R, Alanay Y, Bank RA, Campos-Xavier AB, Zankl A,
Superti-Furga A, et  al. Phenotypic and molecular characteriza-
tion of Bruck syndrome (osteogenesis imperfecta with con-
tractures of the large joints) caused by a recessive mutation in
PLOD2. Am J Med Genet A 2004;131(2):115-20.
[14] Puig-Hervas MT, Temtamy S, Aglan M, Valencia M, Martinez-Glez
V, Ballesta-Martinez MJ, et  al. Mutations in PLOD2 cause autoso-
mal recessive connective tissue disorders within the Bruck syn-
drome-osteogenesis imperfecta phenotypic spectrum. Hum Mutat
2012;33(10):1444-9. doi:http://dx.doi.org/10.1002 / humu.22133.
[15] Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M,
Temtamy S, Tenorio J, et al. Identiication of a mutation causing
deicient BMP1 / mTLD proteolytic activity in autosomal reces-
sive osteogenesis imperfecta. Hum Mutat 2012;33(2):343-50.
[16] Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, et  al.
Exome sequencing identiies truncating mutations in human
SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am
J Hum Genet 2011;88(3):362-71.
[17] Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B,
et  al. Mutations in SERPINF1 cause osteogenesis imperfecta
type VI. J Bone Miner Res 2011;26(12):2798-803.
[18] Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA,
Valencia M, Leton R, et al. Identiication of a frameshift muta-
tion in Osterix in a patient with recessive osteogenesis imper-
fecta. Am J Hum Genet 2010;87(1):110-4.
[19] Jimenez SA, Bashey RI, Benditt M, Yankowski R. Identiication
of collagen alpha1(I) trimer in embryonic chick tendons and
calvaria. Biochem Biophys Res Commun 1977;78(4):1354-61.
CONCLUSION
In summary, the relationship between type I collagen
biology and OI pathophysiology might be represented
by categorizing the latter based on disruptions in type
I collagen homeostasis as: (1) insufficient collagen pro-
duction; (2) extracellular collagen malfunction; and (3)
osteoblast malfunction resulting from abnormal pro-
collagen folding and / or trafficking. We must stress that
these disruptions are interrelated and all of them are
likely to contribute to OI. By somewhat reductionist
discussion of the corresponding concepts, we intend
only to highlight the aspects of type I collagen biology
that might be important for better understanding OI
and developing therapeutic strategies for this devastat-
ing disorder. Our emphasis on procollagen folding and
ER stress stems from the belief that targeting osteoblast
malfunction offers the best hope for new pharmaco-
logical treatments of the most common forms of severe
OI, providing an alternative to much more challenging
gene therapy and stem cell transplantation. We hope
that the present review makes the case for a more care-
ful analysis of this idea.
Acknowledgment
This work was funded by the Intramural Research Program, NICHD,
NIH.
References
[1] Forlino A, Cabral WA, Barnes AM, Marini JC. New per-
spectives on osteogenesis imperfecta. Nat Rev Endocrinol
2011;7(9):540-57.
[2] Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone
M, et  al. CRTAP is required for prolyl 3-hydroxylation and
mutations cause recessive osteogenesis imperfecta. Cell 2006;
127(2):291-304.
 
Search WWH ::




Custom Search