what-when-how
In Depth Tutorials and Information
[83] Mizuno K, Peyton DH, Hayashi T, Engel J, Bächinger HP. Effect
of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl-tripeptide
unit on the stability of collagen model peptides. Febs J 2008;
275(23):5830-40.
[84] Weis MA, Hudson DM, Kim L, Scott M, Wu JJ, Eyre DR.
Location of 3-hydroxyproline residues in collagen types I, II,
III, and V / XI implies a role in ibril supramolecular assembly.
J Biol Chem 2010;285(4):2580-90.
[85] Banos CC, Thomas AH, Kuo CK. Collagen ibrillogenesis
in tendon development: current models and regulation of
ibril assembly. Birth Defects Res C Embryo Today 2008;84(3):
228-44.
[86] Kalamajski S, Oldberg A. The role of small leucine-rich
proteoglycans in collagen ibrillogenesis. Matrix Biol
2010;29(4):248-53.
[87] Corsi A, Xu T, Chen XD, et  al. Phenotypic effects of biglycan
deiciency are linked to collagen ibril abnormalities, are syn-
ergized by decorin deiciency, and mimic Ehlers-Danlos-like
changes in bone and other connective tissues. J Bone Miner Res
2002;17(7):1180-9.
[88] Xu T, Bianco P, Fisher LW, et  al. Targeted disruption of the
biglycan gene leads to an osteoporosis-like phenotype in mice.
Nat Genet 1998;20(1):78-82.
[89] Danielson KG, Baribault H, Holmes DF, Graham H, Kadler
KE, Iozzo RV. Targeted disruption of decorin leads to abnor-
mal collagen ibril morphology and skin fragility. J Cell Biol
1997;136(3):729-43.
[90] Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF.
Abnormal collagen ibrils in tendons of biglycan / ibromodulin-
deicient mice lead to gait impairment, ectopic ossiication, and
osteoarthritis. Faseb J 2002;16(7):673-80.
[91] Keene DR, San Antonio JD, Mayne R, et  al. Decorin
binds near the C terminus of type I collagen. J Biol Chem
2000;275(29):21801-04.
[92] Zhang G, Young BB, Ezura Y, et  al. Development of tendon
structure and function: regulation of collagen ibrillogenesis.
J Musculoskelet Neuronal Interact 2005;5(1):5-21.
[93] Dafforn TR, Della M, Miller AD. The molecular interactions of
heat shock protein 47 (Hsp47) and their implications for colla-
gen biosynthesis. J Biol Chem 2001;276(52):49310-19.
[94] Ishikawa Y, Vranka J, Wirz J, Nagata K, Bächinger HP. The
rough endoplasmic reticulum-resident FK506-binding protein
FKBP65 is a molecular chaperone that interacts with collagens.
J Biol Chem 2008;283(46):31584-90.
[95] Ishida Y, Nagata K. Hsp47 as a collagen-speciic molecular
chaperone. Methods Enzymol 2011;499:167-82.
[96] Nagata K. Hsp47: a collagen-speciic molecular chaperone.
Trends Biochem Sci 1996;21(1):22-6.
[97] Hosokawa N, Hohenadl C, Satoh M, Kuhn K, Nagata K.
HSP47, a collagen-speciic molecular chaperone, delays the
secretion of type III procollagen transfected in human embry-
onic kidney cell line 293: a possible role for HSP47 in collagen
modiication. J Biochem 1998;124(3):654-62.
[98] Nagata K. HSP47 as a collagen-speciic molecular chaperone:
function and expression in normal mouse development. Semin
Cell Dev Biol 2003;14(5):275-82.
[99] Taguchi T, Razzaque MS. The collagen-speciic molecular
chaperone HSP47: is there a role in ibrosis? Trends Mol Med
2007;13(2):45-53.
[102]
Alanay Y, Avaygan H, Camacho N, et al. Mutations in the gene
encoding the RER protein FKBP65 cause autosomal-recessive
osteogenesis imperfecta. Am J Hum Genet 2010;86(4):551-9.
[103]
Venturi G, Monti E, Dalle Carbonare L, et  al. A novel splicing
mutation in FKBP10 causing osteogenesis imperfecta with a
possible mineralization defect. Bone 2012;50(1):343-9.
[104]
Nagata K, Yamada KM. Phosphorylation and transformation
sensitivity of a major collagen-binding protein of ibroblasts.
J Biol Chem 1986;261(16):7531-6.
[105]
Bukau B, Weissman J, Horwich A. Molecular chaperones and
protein quality control. Cell 2006;125(3):443-51.
[106]
Schroder M, Kaufman RJ. The mammalian unfolded protein
response. Annu Rev Biochem 2005;74:739-89.
[107]
Ragg H. The role of serpins in the surveillance of the secretory
pathway. Cell Mol Life Sci 2007;64(21):2763-70.
[108]
Koide T, Nishikawa Y, Asada S, et  al. Speciic recognition of
the collagen triple helix by chaperone HSP47. II. The HSP47-
binding structural motif in collagens and related proteins.
J Biol Chem 2006;281(16):11177-85.
[109]
Koide T, Aso A, Yorihuzi T, Nagata K. Conformational require-
ments of collagenous peptides for recognition by the chaper-
one protein HSP47. J Biol Chem 2000;275(36):27957-63.
[110]
Nagai N, Hosokawa M, Itohara S, et  al. Embryonic lethal-
ity of molecular chaperone hsp47 knockout mice is asso-
ciated with defects in collagen biosynthesis. J Cell Biol
2000;150(6):1499-506.
[111]
Matsuoka Y, Kubota H, Adachi E, et al. Insuficient folding of type
IV collagen and formation of abnormal basement membrane-like
structure in embryoid bodies derived from Hsp47-null embryonic
stem cells. Mol Biol Cell 2004;15(10):4467-75.
[112]
Kojima T, Miyaishi O, Saga S, Ishiguro N, Tsutsui Y, Iwata H.
The retention of abnormal type I procollagen and correlated
expression of HSP 47 in ibroblasts from a patient with lethal
osteogenesis imperfecta. J Pathol 1998;184(2):212-8.
[113]
Coss MC, Winterstein D, Sowder 2nd RC, Simek SL. Molecular
cloning, DNA sequence analysis, and biochemical characteriza-
tion of a novel 65-kDa FK506-binding protein (FKBP65). J Biol
Chem 1995;270(49):29336-41.
[114]
Patterson CE, Schaub T, Coleman EJ, Davis EC. Developmental
regulation of FKBP65. An ER-localized extracellular matrix
binding-protein. Mol Biol Cell 2000;11(11):3925-35.
[115]
Zeng B, MacDonald JR, Bann JG, et al. Chicken FK506-binding
protein, FKBP65, a member of the FKBP family of peptidyl-
prolyl cis-trans isomerases, is only partially inhibited by
FK506. Biochem J 1998;330( Pt 1 ):109-14.
[116]
Breslau-Siderius EJ, Engelbert RH, Pals G, van der Sluijs JA.
Bruck syndrome: a rare combination of bone fragility and
multiple congenital joint contractures. J Pediatr Orthop B
1998;7(1):35-8.
[117]
Ha-Vinh R, Alanay Y, Bank RA, et al. Phenotypic and molecu-
lar characterization of Bruck syndrome (osteogenesis imper-
fecta with contractures of the large joints) caused by a recessive
mutation in PLOD2. Am J Med Genet A 2004;131(2):115-20.
[118]
Puig-Hervas MT, Temtamy S, Aglan M, et  al. Mutations in
PLOD2 cause autosomal recessive connective tissue disorders
within the Bruck syndrome-osteogenesis imperfecta pheno-
typic spectrum. Hum Mutat 2012;33(10):1444-9.
[119]
Setijowati ED, van Dijk FS, Cobben JM, et al. A novel homozy-
gous 5 bp deletion in FKBP10 causes clinically Bruck syndrome
in an Indonesian patient. Eur J Med Genet 2011;55(1):17-21.
[100]
Drogemuller C, Becker D, Brunner A, et  al. A missense muta-
tion in the SERPINH1 gene in Dachshunds with osteogenesis
imperfecta. PLoS Genet 2009;5(7):e1000579.
[120]
Martinez-Glez V, Valencia M, Caparros-Martin JA, et  al.
Identiication of a mutation causing deicient BMP1 / mTLD
proteolytic activity in autosomal recessive osteogenesis imper-
fecta. Hum Mutat 2012;33(2):343-50.
[101]
Christiansen HE, Schwarze U, Pyott SM, et  al. Homozygosity
for a missense mutation in SERPINH1, which encodes the col-
lagen chaperone protein HSP47, results in severe recessive
osteogenesis imperfecta. Am J Hum Genet 2010;86(3):389-98.
[121]
Becker J, Semler O, Gilissen C, et  al. Exome sequencing
identiies truncating mutations in human SERPINF1 in
Search WWH ::




Custom Search