what-when-how
In Depth Tutorials and Information
and result in perinatal lethal to moderate osteogenesis imper-
fecta phenotypes. Hum Mol Genet 2011;20(8):1595-609.
[6] Shaheen R, Al-Owain M, Faqeih E, et al. Mutations in FKBP10
cause both Bruck syndrome and isolated osteogenesis imper-
fecta in humans. Am J Med Genet A 2011;155A(6):1448-52.
[7] Valli M, Barnes A, Gallanti A, et  al. Deiciency of CRTAP in
non-lethal recessive osteogenesis imperfecta reduces collagen
deposition into matrix. Clin Genet 2012;82(5):453-9.
[8] Kelley BP, Malfait F, Bonafe L, et al. Mutations in FKBP10 cause
recessive osteogenesis imperfecta and Bruck syndrome. J Bone
Miner Res 2011;26(3):666-72.
[9] Schwarze U, Pyott S, Russell D, Sussman M, Harris C, Byers PH.
2009. Mutations in PPIB which encodes a prolyl cis-trans isomer-
ase (cyclophilin B) in recessive forms of osteogenesis imperfecta
(OI). In: Program and abstracts of the 59th Annual Meeting of
the American Society of Human Genetics, Honolulu, October
20-24, 73. abstract.
[10] Marini JC, Cabral WA, Barnes AM. Null mutations in LEPRE1
and CRTAP cause severe recessive osteogenesis imperfecta.
Cell Tissue Res 2010;339(1):59-70.
[11] Vranka JA, Pokidysheva E, Hayashi L, et al. Prolyl 3-hydroxy-
lase 1 null mice display abnormalities in ibrillar collagen-rich
tissues such as tendons, skin, and bones. J Biol Chem 2010;
285(22):17253-62.
[12] Van Dijk FS, Nesbitt IM, Nikkels PG, et  al. CRTAP mutations
in lethal and severe osteogenesis imperfecta: the importance
of combining biochemical and molecular genetic analysis. Eur
J Hum Genet 2009;17(12):1560-9.
[13] Van Dijk FS, Nesbitt IM, Zwikstra EH, et  al. PPIB muta-
tions cause severe osteogenesis imperfecta. Am J Hum Genet
2009;85(4):521-7.
[14] Willaert A, Malfait F, Symoens S, et  al. Recessive osteogenesis
imperfecta caused by LEPRE1 mutations: clinical documenta-
tion and identiication of the splice form responsible for prolyl
3-hydroxylation. J Med Genet 2009;46(4):233-41.
[15] Choi JW, Sutor SL, Lindquist L, et  al. Severe osteogen-
esis imperfecta in cyclophilin B-deicient mice. PLoS Genet
2009;5(12):e1000750.
[16] Baldridge D, Schwarze U, Morello R, et al. CRTAP and LEPRE1
mutations in recessive osteogenesis imperfecta. Hum Mutat
2008;29(12):1435-42.
[17] Cabral WA, Chang W, Barnes AM, et  al. Prolyl 3-hydroxylase 1
deiciency causes a recessive metabolic bone disorder resembling
lethal / severe osteogenesis imperfecta. Nat Genet 2007;39(3):359-65.
[18] Morello R, Bertin TK, Chen Y, et al. CRTAP is required for pro-
lyl 3-hydroxylation and mutations cause recessive osteogenesis
imperfecta. Cell 2006;127(2):291-304.
[19] Braakman I, Bulleid NJ. Protein folding and modiication in
the mammalian endoplasmic reticulum. Annu Rev Biochem
2011;80:71-99.
[20] Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bachinger HP,
Nagata K. Type I collagen in Hsp47-null cells is aggregated in
endoplasmic reticulum and deicient in N-propeptide process-
ing and ibrillogenesis. Mol Biol Cell 2006;17(5):2346-55.
[21] Hu G, Gura T, Sabsay B, Sauk J, Dixit SN, Veis A. Endoplasmic
reticulum protein Hsp47 binds speciically to the N-terminal
globular domain of the amino-propeptide of the procollagen I
alpha 1 (I)-chain. J Cell Biochem 1995;59(3):350-67.
[22] Makareeva E, Leikin S. Procollagen triple helix assembly: an
unconventional chaperone-assisted folding paradigm. PLoS
One 2007;2(10):e1029.
[23] Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of colla-
gen biosynthesis. Matrix Biol 2003;22(1):15-24.
[24] Vranka JA, Sakai LY, Bächinger HP. Prolyl 3-hydroxylase 1,
enzyme characterization and identiication of a novel family of
enzymes. J Biol Chem 2004;279(22):23615-21.
[25] Myllyharju J, Kivirikko KI. Collagens, modifying enzymes
and their mutations in humans, lies and worms. Trends Genet
2004;20(1):33-43.
[26] Kivirikko KI, Myllyla R. Posttranslational enzymes in the bio-
synthesis of collagen: intracellular enzymes. Methods Enzymol
1982;82 Pt A:245-304.
[27] Boudko SP, Engel J, Bächinger HP. The crucial role of trimer-
ization domains in collagen folding. Int J Biochem Cell Biol
2012;44(1):21-32.
[28] Beck K, Boswell BA, Ridgway CC, Bachinger HP. Triple helix
formation of procollagen type I can occur at the rough endo-
plasmic reticulum membrane. J Biol Chem 1996;271(35):
21566-73.
[29] Bächinger HP. The inluence of peptidyl-prolyl cis-trans isom-
erase on the in vitro folding of type III collagen. J Biol Chem
1987;262(35):17144-48.
[30] Bonfanti L, Mironov Jr AA, Martinez-Menarguez JA, et  al.
Procollagen traverses the Golgi stack without leaving the
lumen of cisternae: evidence for cisternal maturation. Cell
1998;95(7):993-1003.
[31] Mironov AA, Weidman P, Luini A. Variations on the intracellu-
lar transport theme: maturing cisternae and traficking tubules.
J Cell Biol 1997;138(3):481-4.
[32] Wilson DG, Phamluong K, Li L, et  al. Global defects in colla-
gen secretion in a Mia3 / TANGO1 knockout mouse. J Cell Biol
2011;193(5):935-51.
[33] Malhotra V, Erlmann P. Protein export at the ER: loading big
collagens into COPII carriers. Embo J 2011;30(17):3475-80.
[34] Saito K, Chen M, Bard F, et  al. TANGO1 facilitates
cargo loading at endoplasmic reticulum exit sites. Cell
2009;136(5):891-902.
[35] Hojima Y, van der Rest M, Prockop DJ. Type I procollagen
carboxyl-terminal proteinase from chick embryo tendons.
Puriication and characterization. J Biol Chem 1985;260(29):
15996-16003.
[36] Tuderman L, Kivirikko KI, Prockop DJ. Partial puriica-
tion and characterization of a neutral protease which cleaves
the N-terminal propeptides from procollagen. Biochemistry
1978;17(15):2948-54.
[37] Greenspan D. Biosynthetic processing of collagen molecules
Brinckmann J, Notbohm H, Müller PK, editors. Collagen.
Berlin Heidelberg: Springer; 2005. p. 149-83.
[38] Eyre ER, Wu JJ. Collagen cross-links Brinckmann J, Notbohm
H, Müller PK, editors. Collagen. Berlin Heidelberg: Springer;
2005. p. 207-29.
[39] Bächinger HP, Mizuno K, Vranka J, Boudko SP. Collagen
formation and structure Mander L, Lui H-W, editors.
Comprehensive natural products. II: chemistry and biology.
Oxford: Elsevier; 2010. p. 469-530.
[40] Bulleid NJ, Dalley JA, Lees JF. The C-propeptide domain of
procollagen can be replaced with a transmembrane domain
without affecting trimer formation or collagen triple helix fold-
ing during biosynthesis. Embo J 1997;16(22):6694-701.
[41] Engel J, Prockop DJ. The zipper-like folding of collagen triple
helices and the effects of mutations that disrupt the zipper.
Annu Rev Biophys Biophys Chem 1991;20:137-52.
[42] Bächinger HP, Bruckner P, Timpl R, Prockop DJ, Engel J.
Folding mechanism of the triple helix in type-III collagen and
type-III pN-collagen. Role of disulide bridges and peptide
bond isomerization. Eur J Biochem 1980;106(2):619-32.
[43] Kivirikko KI, Myllyharju J. Prolyl 4-hydroxylases and their
protein disulide isomerase subunit. Matrix Biol 1998;16(7):
357-68.
[44] Kivirikko KI, Pihlajaniemi T. Collagen hydroxylases and the
protein disulide isomerase subunit of prolyl 4-hydroxylases.
Adv Enzymol Relat Areas Mol Biol 1998;72:325-98.
Search WWH ::




Custom Search