what-when-how
In Depth Tutorials and Information
non-functional pro(alpha)2(I) chain and an EDS/OI clinical
phenotype. J Med Genet 2001;38(2):132-6.
[94] Sasaki T, Arai K, Ono M, Yamaguchi T, Furuta S, Nagai Y.
Ehlers-Danlos syndrome. A variant characterized by the dei-
ciency of pro alpha 2 chain of type I procollagen. Arch Dermatol
1987;123(1):76-9.
[95] Schwarze U, Hata R, McKusick VA, et  al. Rare autosomal reces-
sive cardiac valvular form of Ehlers-Danlos syndrome results
from mutations in the COL1A2 gene that activate the nonsense-
mediated RNA decay pathway. Am J Hum Genet 2004;74(5):
917-30.
[96] Nicholls AC, Pope FM, Schloon H. Biochemical heterogeneity of
osteogenesis imperfecta: new variant. Lancet 1979;1(8127):1193.
[97] Daley E, Streeten EA, Sorkin JD, et  al. Variable bone fragility
associated with an Amish COL1A2 variant and a knock-in
mouse model. J Bone Miner Res 2010;25(2):247-61.
[98] Lisse TS, Thiele F, Fuchs H, et al. ER stress-mediated apoptosis
in a new mouse model of osteogenesis imperfecta. PLoS Genet
2008;4(2):e7.
[99] Campbell BG, Wootton JAM, MacLeod JN, Minor RR. Sequence
of normal canine COL1A1 cDNA and identiication of a het-
erozygous α1(I) collagen Gly208AIa mutation in a severe case
of canine osteogenesis imperfecta. Arch Biochem Biophys
2000;384(1):37-46.
[106] Vranka JA, Pokidysheva E, Hayashi L, et  al. Prolyl 3-hydrox-
ylase 1 null mice display abnormalities in ibrillar collagen-
rich tissues such as tendons, skin and bones. J Biol Chem
2010;285(22):17253-62.
[107] Choi JW, Sutor SL, Lindquist L, et  al. Severe osteogen-
esis imperfecta in cyclophilin B-deicient mice. PLoS Genet
2009;5(12):e1000750.
[108] Tryon RC, White SD, Bannasch DL. Homozygosity
mapping approach identiies a missense mutation in equine
cyclophilin B (PPIB) associated with HERDA in the American
Quarter Horse. Genomics 2007;90(1):93-102.
[109] White SD, Bourdeau P. Prevalence of the mutation in
cyclophilin B (PPIB), a causal candidate gene for HERDA,
among Quarter Horses in France. Vet Dermatol 2011;22(2):206-8.
[110] Ishida Y, Kubota H, Yamamoto A, Kitamura A, Bachinger HP,
Nagata K. Type I collagen in Hsp47-null cells is aggregated in
endoplasmic reticulum and deicient in N-propeptide process-
ing and ibrillogenesis. Mol Biol Cell 2006;17(5):2346-55.
[111] Nagata K. HSP47 as a collagen-speciic molecular chaperone:
function and expression in normal mouse development. Semin
Cell Dev Biol 2003;14(5):275-82.
[112] Nagai N, Hosokawa M, Itohara S, et  al. Embryonic lethality of
molecular chaperone hsp47 knockout mice is associated with
defects in collagen biosynthesis. J Cell Biol 2000;150(6):1499-506.
[113] Seeliger F, Leeb T, Peters M, Brügmann M, Fehr M, Hewicker-
Trautwein M. Osteogenesis imperfecta in two litters of dachs-
hunds. Vet Pathol Online 2003;40(5):530-9.
[114] Drogemuller C, Becker D, Brunner A, et  al. A missense muta-
tion in the SERPINH1 gene in dachshunds with osteogenesis
imperfecta. PLoS Genet 2009;5(7):e1000579.
[115] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc inger-
containing transcription factor osterix is required for osteoblast
differentiation and bone formation. Cell 2002;108(1):17-29.
[116] Baek WY, Lee MA, Jung JW, et  al. Positive regulation of adult
bone formation by osteoblast-speciic transcription factor
osterix. J Bone Miner Res 2009;24(6):1055-65.
[117] Lapunzina P, Aglan M, Temtamy S, et  al. Identiication of
a frameshift mutation in Osterix in a patient with recessive
osteogenesis imperfecta. Am J Hum Genet 2010;87(1):110-4.
[118] Faculty of Veterinary Science UoS. Online Mendelian
Inheritance in Animals, OMIA. World Wide Web URL: < http://
omiaangisorgau/ >.
[100]
Campbell BG, Wootton JAM, Macleod JN, Minor RR. Canine
COL1A2 mutation resulting in C-terminal truncation of Pro-α2(I)
and severe osteogenesis imperfecta. J Bone Min Res 2001;16(6):
1147-53.
[101]
Campbell BG, Wootton JA, Krook L, DeMarco J, Minor RR.
Clinical signs and diagnosis of osteogenesis imperfecta in three
dogs. J Am Vet Med Assoc 1997;211(2):183-7.
[102]
Marini JC, Cabral WA, Barnes AM. Null mutations in LEPRE1
and CRTAP cause severe recessive osteogenesis imperfecta.
Cell Tissue Res 2010;339(1):59-70.
[103]
Vranka JA, Sakai LY, Bachinger HP. Prolyl 3-hydroxylase 1,
enzyme characterization and identiication of a novel family of
enzymes. J Biol Chem 2004;279(22):23615-21.
[104]
Morello R, Bertin TK, Chen Y, et al. CRTAP is required for pro-
lyl 3-hydroxylation and mutations cause recessive osteogenesis
imperfecta. Cell 2006;127(2):291-304.
[105]
Fratzl-Zelman N, Morello R, Lee B, et  al. CRTAP deiciency
leads to abnormally high bone matrix mineralization in a
murine model and in children with osteogenesis imperfecta
type VII. Bone 2010;46(3):820-6.
Search WWH ::




Custom Search