what-when-how
In Depth Tutorials and Information
the consensus-binding sites of Sp1. In that regard, it has
been shown that overexpression of Osx in vitro induced
expression of markers such as collagen1α1, Dkk1, scleros-
tin and bone sialoprotein, reportedly from canonical Sp1-
binding sites. 42
[10]
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM,
Behringer RR, et  al. The novel zinc inger-containing transcription
factor osterix is required for osteoblast differentiation and bone for-
mation. Cell 2002;108:17-29.
[11]
Karsenty G. The genetic transformation of bone biology. Genes
Dev 1999;13:3037-51.
[12]
DeLise AM, Fischer L, Tuan RS. Cellular interactions and signaling
in cartilage development. Osteoarthritis Cartilage 2000;8:309-34.
[13]
Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev
Cell Dev Biol 2000;16:191-220.
FINAL COMMENTS
[14]
Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B.
Sox9 is required for cartilage formation. Nat Genet 1999;22:
85-9.
In summary, the data we present here add a new gene
to the growing number of causative loci for autosomal
recessive OI and indicate that mutations in transcrip-
tion factors that regulate the expression of osteoblast-
specific genes can also be accountable for this disorder.
Further testing is required to ascertain what proportion
of autosomal recessive cases of OI arise from mutations
in OSX , but preliminary data suggest that this molecu-
lar subtype of AR-OI is very rare and probably accounts
for a limited or even private number of families. It could
also be possible that the mutation we described here is
hypomorphomic and results in some residual activity of
the protein while more deleterious mutations of this gene
could be incompatible with life.
[15]
Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, et al.
The transcription factors L-Sox5 and Sox6 are essential for carti-
lage formation. Dev Cell 2001;1:277-90.
[16]
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K,
Deguchi K, et  al. Targeted disruption of Cbfa1 results in a com-
plete lack of bone formation owing to maturational arrest of osteo-
blasts. Cell 1997;89:755-64.
[17]
Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC,
Rosewell IR, et al. Cbfa1, a candidate gene for cleidocranial dys-
plasia syndrome, is essential for osteoblast differentiation and
bone development. Cell 1997;89:765-71.
[18]
Inada M, Yasui T, Nomura S, Miyake S, Deguchi K,
Himeno M, et  al. Maturational disturbance of chondrocytes in
Cbfa1-deicient mice. Dev Dyn 1999;214:279-90.
[19]
Kim IS, Otto F, Zabel B, Mundlos S. Regulation of chondrocyte
differentiation by Cbfa1. Mech Dev 1999;80:159-70.
[20]
Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-
Iwamoto M, et  al. Skeletal malformations caused by overexpres-
sion of Cbfa1 or its dominant negative form in chondrocytes. J Cell
Biol 2001;153:87-100.
References
[1] Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S,
et  al. Prolyl 3-hydroxylase 1 deiciency causes a recessive meta-
bolic bone disorder resembling lethal/severe osteogenesis imper-
fecta. Nat Genet 2007;39:359-65.
[2] Barnes AM, Chang W, Morello R, Cabral WA, Weis M, Eyre DR,
et al. Deiciency of cartilage-associated protein in recessive lethal
osteogenesis imperfecta. N Engl J Med 2006;355:2757-64.
[3] Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M,
et al. CRTAP is required for prolyl 3-hydroxylation and mutations
cause recessive osteogenesis imperfecta. Cell 2006;127:291-304.
[4] van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR,
Fratantoni SA, et  al. PPIB mutations cause severe osteogenesis
imperfecta. Am J Hum Genet 2009;85:521-7.
[5] Ishikawa Y, Wirz J, Vranka JA, Nagata K, Bachinger HP.
Biochemical characterization of the prolyl 3-hydroxylase
1.cartilage-associated protein cyclophilin B complex. J Biol Chem
2009;284:17641-17647.
[6] Krane SM. The importance of proline residues in the structure,
stability and susceptibility to proteolytic degradation of colla-
gens. Amino Acids 2008;35:703-10.
[7] Christiansen HE, Schwarze U, Pyott SM, Alswaid A, Al Balwi M,
Alrasheed S, et  al. Homozygosity for a missense mutation in
SERPINH1, which encodes the collagen chaperone protein HSP47,
results in severe recessive osteogenesis imperfecta. Am J Hum Genet
2010;86:389-98.
[8] Drogemuller C, Becker D, Brunner A, Haase B, Kircher P,
Seeliger F, et al. A missense mutation in the SERPINH1 gene in
Dachshunds with osteogenesis imperfecta. PLoS Genet 2009;
5:e1000579.
[9] Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA,
Valencia M, Letón R, et  al. Identiication of a frameshift muta-
tion in Osterix in a patient with recessive osteogenesis imper-
fecta. Am J Hum Genet 2010;87:110-4.
[21]
St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedge-
hog signaling regulates proliferation and differentiation of
chondrocytes and is essential for bone formation. Genes Dev
1999;13(16):2072-86. Erratum in: Genes Dev 1999;13:2617.
[22]
Milona MA, Gough JE, Edgar AJ. Expression of alternatively
spliced isoforms of human Sp7 in osteoblast-like cells. BMC
Genomics 2003;4:43.
[23]
Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcrip-
tion factors: bring in the family. Genomics 2005;85:551-6.
[24]
Gao Y, Jheon A, Nourkeyhani H, Kobayashi H, Ganss B.
Molecular cloning, structure, expression, and chromosomal local-
ization of the human Osterix (SP7) gene. Gene 2004;341:101-10.
[25]
Nardelli J, Gibson TJ, Vesque C, Charnay P. Base sequence dis-
crimination by zinc-inger DNA-binding domains. Nature 1991;
349:175-8.
[26]
Nardelli J, Gibson T, Charnay P. Zinc inger-DNA recognition:
analysis of base speciicity by site-directed mutagenesis. Nucleic
Acids Res 1992;20:4137-44.
[27]
Choo Y, Klug A. Selection of DNA binding sites for zinc ingers
using rationally randomized DNA reveals coded interactions.
Proc Natl Acad Sci USA 1994;91:11168-72.
[28]
Uno Y, Matsushita K, Nagaoka M, Sugiura Y. Finger-positional
change in three zinc inger protein Sp1: inluence of terminal in-
ger in DNA recognition. Biochemistry 2001;40:1787-95.
[29]
Yokono M, Saegusa N, Matsushita K, Sugiura Y. Unique DNA
binding mode of the N-terminal zinc inger of transcription fac-
tor Sp1. Biochemistry 1998;37:6824-32.
[30]
Warner LE, Mancias P, Butler IJ, McDonald CM, Keppen L,
Koob KG, et  al. Mutations in the early growth response 2 (EGR2)
gene are associated with hereditary myelinopathies. Nat Genet
1998;18:382-4.
 
Search WWH ::




Custom Search