what-when-how
In Depth Tutorials and Information
[10]
Lees JF, Tasab M, Bulleid NJ. Identiication of the molecular rec-
ognition sequence which determines the type-speciic assembly
of procollagen. EMBO J 1997;16(5):908-16.
[29]
Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in
health and disease. Hum Mol Genet 1999;8(10):1893-900.
[30]
Willing MC, Deschenes SP, Slayton RL, Roberts EJ. Premature
chain termination is a unifying mechanism for COL1A1 null
alleles in osteogenesis imperfecta type I cell strains. Am J Hum
Genet 1996;59(4):799-809.
[11]
Doege KJ, Fessler JH. Folding of carboxyl domain and assembly
of procollagen I. J Biol Chem 1986;261(19):8924-35.
[12]
Schoield JD, Uitto J, Prockop DJ. Formation of interchain disul-
ide bonds and helical structure during biosynthesis of procolla-
gen by embryonic tendon cells. Biochemistry 1974;13(9):1801-6.
[31]
Marini JC, Forlino A, Cabral WA, et al. Consortium for osteogen-
esis imperfecta mutations in the helical domain of type I collagen:
regions rich in lethal mutations align with collagen binding sites
for integrins and proteoglycans. Hum Mutat 2007;28(3):209-21.
[13]
Olsen BR, Hoffmann H, Prockop DJ. Interchain disulide bonds
at the COOH-terminal end of procollagen synthesized by
matrix-free cells from chick embryonic tendon and cartilage.
Arch Biochem Biophys 1976;175(1):341-50.
[32]
Forlino A, Cabral WA, Barnes AM, Marini JC. New per-
spectives on osteogenesis imperfecta. Nat Rev Endocrinol
2011;7(9):540-57.
[14]
Marini JC, Cabral WA, Barnes AM, Chang W. Components of
the collagen prolyl 3-hydroxylation complex are crucial for nor-
mal bone development. Cell Cycle 2007;6(14):1675-81.
[33]
Vogel BE, Doelz R, Kadler KE, Hojima Y, Engel J, Prockop DJ.
A substitution of cysteine for glycine 748 of the alpha 1 chain
produces a kink at this site in the procollagen I molecule and an
altered N-proteinase cleavage site over 225 nm away. J Biol Chem
1988;263(35):19249-55.
[15]
Nishikawa Y, Takahara Y, Asada S, et  al. A structure-activity
relationship study elucidating the mechanism of sequence-
speciic collagen recognition by the chaperone HSP47. Bioorg
Med Chem 2010;18(11):3767-75.
[34]
Forlino A, Keene DR, Schmidt K, Marini JC. An alpha2(I) gly-
cine to aspartate substitution is responsible for the presence of
a kink in type I collagen in a lethal case of osteogenesis imper-
fecta. Matrix Biol 1998;17(8-9):575-84.
[16]
Chessler SD, Byers PH. BiP binds type I procollagen pro alpha
chains with mutations in the carboxyl-terminal propeptide syn-
thesized by cells from patients with osteogenesis imperfecta.
J Biol Chem 1993;268(24):18226-33.
[35]
Vogel BE, Minor RR, Freund M, Prockop DJ. A point mutation
in a type I procollagen gene converts glycine 748 of the alpha 1
chain to cysteine and destabilizes the triple helix in a lethal vari-
ant of osteogenesis imperfecta. J Biol Chem 1987;262(30):14737-44.
[17]
Lamande SR, Chessler SD, Golub SB, et al. Endoplasmic reticu-
lum-mediated quality control of type I collagen production by
cells from osteogenesis imperfecta patients with mutations in
the pro alpha 1 (I) chain carboxyl-terminal propeptide which
impair subunit assembly. J Biol Chem 1995;270(15):8642-9.
[36]
Yang W, Battineni ML, Brodsky B. Amino acid sequence envi-
ronment modulates the disruption by osteogenesis imperfecta
glycine substitutions in collagen-like peptides. Biochemistry
1997;36(23):6930-5.
[18]
Bachinger HP, Bruckner P, Timpl R, Prockop DJ, Engel J. Folding
mechanism of the triple helix in type-III collagen and type-III
pN-collagen. Role of disulide bridges and peptide bond isom-
erization. Eur J Biochem 1980;106(2):619-32.
[37]
Dalgleish R. The human type I collagen mutation database.
Nucleic Acids Res 1997;25(1):181-7.
[19]
Bachinger HP, Fessler LI, Timpl R, Fessler JH. Chain assembly
intermediate in the biosynthesis of type III procollagen in chick
embryo blood vessels. J Biol Chem 1981;256(24):13193-9.
[38]
Dalgleish R. The human collagen mutation database 1998.
Nucleic Acids Res 1998;26(1):253-5.
[39]
Cundy T, King A, Byers PH. A novel disorder of type I collagen
characterized by high bone mass, mineralization defect and ten-
don calciication. Calcif Tissue Int 2008:82S1.
[20]
Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen ibril
formation. Biochem J 1996;316( Pt 1 ):1-11.
[21]
Prockop DJ, Hulmes DJ. Assembly of procollagen ibrils de novo
from soluble precursors Yurchenco PD, Birk DE, Mecham RP,
editors. Extracellular matrix assembly and structure. San Diego:
Academic Press; 1994. p. 47-90.
[40]
Ries-Levavi L, Ish-Shalom T, Frydman M, et al. Genetic and bio-
chemical analyses of Israeli osteogenesis imperfecta patients.
Hum Mutat 2004;23(4):399-400.
[41]
Lindahl K, Barnes AM, Fratzl-Zelman N, et  al. COL1
C-propeptide cleavage site mutations cause high bone mass
osteogenesis imperfecta. Hum Mutat 2011;32(6):598-609.
[22]
Colige A, Li SW, Sieron AL, Nusgens BV, Prockop DJ, Lapiere CM.
cDNA cloning and expression of bovine procollagen I N-proteinase:
a new member of the superfamily of zinc-metalloproteinases with
binding sites for cells and other matrix components. Proc Natl Acad
Sci USA 1997;94(6):2374-9.
[42]
Pollitt R, McMahon R, Nunn J, et  al. Mutation analysis of
COL1A1 and COL1A2 in patients diagnosed with osteogenesis
imperfecta type I-IV. Hum Mutat 2006;27(7):716.
[23]
Colige A, Sieron AL, Li SW, et  al. Human Ehlers-Danlos syn-
drome type VII C and bovine dermatosparaxis are caused by
mutations in the procollagen I N-proteinase gene. Am J Hum
Genet 1999;65(2):308-17.
[43]
Perlmutter DH. Chemical chaperones: a pharmacological strat-
egy for disorders of protein folding and traficking. Pediatr Res
2002;52(6):832-6.
[44]
Symoens S, Nuytinck L, Legius E, Malfait F, Coucke PJ, De
Paepe A. Met>Val substitution in a highly conserved region of
the pro-alpha1(I) collagen C-propeptide domain causes alter-
native splicing and a mild EDS/OI phenotype. J Med Genet
2004;41(7):e96.
[24]
Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS.
Bone morphogenetic protein-1: the type I procollagen C-proteinase.
Science 1996;271(5247):360-2.
[25]
Hopkins DR, Keles S, Greenspan DS. The bone morphoge-
netic protein 1/Tolloid-like metalloproteinases. Matrix Biol
2007;26(7):508-23.
[45]
Chessler SD, Wallis GA, Byers PH. Mutations in the carboxyl-
terminal propeptide of the pro alpha 1(I) chain of type I collagen
result in defective chain association and produce lethal osteo-
genesis imperfecta. J Biol Chem 1993;268(24):18218-25.
[26]
Li SW, Sieron AL, Fertala A, Hojima Y, Arnold WV, Prockop DJ.
The C-proteinase that processes procollagens to ibrillar colla-
gens is identical to the protein previously identiied as bone mor-
phogenic protein-1. Proc Natl Acad Sci USA 1996;93(10):5127-30.
[46]
Pyott SM, Pepin MG, Schwarze U, Yang K, Smith G, Byers PH.
Recurrence of perinatal lethal osteogenesis imperfecta in sib-
ships: parsing the risk between parental mosaicism for domi-
nant mutations and autosomal recessive inheritance. Genet Med
2011;13(2):125-30.
[27]
Moali C, Font B, Ruggiero F, et  al. Substrate-speciic modula-
tion of a multisubstrate proteinase. C-terminal processing of
ibrillar procollagens is the only BMP-1-dependent activity to be
enhanced by PCPE-1. J Biol Chem 2005;280(25):24188-94.
[47]
Pace JM, Atkinson M, Willing MC, Wallis G, Byers PH.
Deletions and duplications of Gly-Xaa-Yaa triplet repeats in the
triple helical domains of type I collagen chains disrupt helix
[28]
Canty EG, Kadler KE. Procollagen traficking, processing and
ibrillogenesis. J Cell Sci 2005;118(Pt 7):1341-53.
Search WWH ::




Custom Search