what-when-how
In Depth Tutorials and Information
[5] Persikov AV, Pillitteri RJ, Amin P, Schwarze U, Byers PH,
Brodsky B. Stability related bias in residues replacing glycines
within the collagen triple helix (Gly-Xaa-Yaa) in inherited con-
nective tissue disorders. Hum Mutat 2004;24(4):330-7.
[6] Beck K, Chan VC, Shenoy N, Kirkpatrick A, Ramshaw JA,
Brodsky B. Destabilization of osteogenesis imperfecta collagen-
like model peptides correlates with the identity of the residue
replacing glycine. Proc Natl Acad Sci USA 2000;97(8):4273-8.
[7] Xiao J, Madhan B, Li Y, Brodsky B, Baum J. Osteogenesis imper-
fecta model peptides: incorporation of residues replacing Gly
within a triple helix achieved by renucleation and local lexibil-
ity. Biophys J 2011;101(2):449-58.
[8] Byers PH. Folding defects in ibrillar collagens. Philos Trans R
Soc Lond B Biol Sci 2001;356(1406):151-7. discussion 157-8.
[9] Makareeva E, Cabral WA, Marini JC, Leikin S. Molecular mecha-
nism of alpha 1(I)-osteogenesis imperfecta/Ehlers-Danlos syn-
drome: unfolding of an N-anchor domain at the N-terminal end of
the type I collagen triple helix. J Biol Chem 2006;281(10):6463-70.
energy differences of collagen model peptides. Biopolymers
2011;95(3):182-93.
[24]
Lee KHK, Kuczera K, Holl MM. Effect of osteogenesis imper-
fecta mutations on free energy of collagen model peptides:
a molecular dynamics simulation. Biophys Chem 2011;
156(2-3):146-52.
[25]
Li Y, Brodsky B, Baum J. NMR conformational and dynamic con-
sequences of a Gly to Ser substitution in an osteogenesis imper-
fecta collagen model peptide. J Biol Chem 2009;284(31):20660-7.
[26]
Bodian DL, Madhan B, Brodsky B, Klein TE. Predicting the clini-
cal lethality of osteogenesis imperfecta from collagen glycine
mutations. Biochemistry 2008;47(19):5424-32.
[27]
Mooney SD, Klein TE. Structural models of osteogenesis
imperfecta-associated variants in the COL1A1 gene. Mol Cell
Proteomics 2002;1(11):868-75.
[28]
Makareeva E, Aviles NA, Leikin S. Chaperoning osteogen-
esis: new protein-folding disease paradigms. Trends Cell Biol
2011;21(3):168-76.
[10]
Sweeney SM, Orgel JP, Fertala A, et al. Candidate cell and matrix
interaction domains on the collagen ibril, the predominant pro-
tein of vertebrates. J Biol Chem 2008;283(30):21187-97.
[29]
Shi Z, Moult J. Structural and functional impact of cancer-related
missense somatic mutations. J Mol Biol 2011;413(2):495-512.
[30]
Leikina E, Mertts MV, Kuznetsova N, Leikin S. Type I collagen
is thermally unstable at body temperature. Proc Natl Acad Sci
USA 2002;99(3):1314-8.
[11]
Bella J, Eaton M, Brodsky B, Berman HM. Crystal and molecular
structure of a collagen-like peptide at 1.9 A resolution. Science
1994;266(5182):75-81.
[31]
Persikov AV, Brodsky B. Unstable molecules form stable tissues.
Proc Natl Acad Sci USA 2002;99(3):1101-3.
[12]
Rich A, Crick FH. The molecular structure of collagen. J Mol
Biol 1961;3:483-506.
[32]
Rigby BJ, Robinson MS. Thermal transitions in collagen
and the preferred temperature range of animals. Nature
1975;253(5489):277-9.
[13]
Ramachandran GN. Ramachandran GN, editor. Treatise on
Collagen. New York: Academic Press; 1967. p. 103-83.
[14]
Vogel BE, Doelz R, Kadler KE, Hojima Y, Engel J, Prockop DJ.
A substitution of cysteine for glycine 748 of the alpha 1 chain
produces a kink at this site in the procollagen I molecule and
an altered N-proteinase cleavage site over 225 nm away. J Biol
Chem 1988;263(35):19249-55.
[33]
Bruckner P, Prockop DJ. Proteolytic enzymes as probes for
the triple-helical conformation of procollagen. Anal Biochem
1981;110(2):360-8.
[34]
Kuivaniemi H, Tromp G, Prockop DJ. Mutations in collagen
genes: causes of rare and some common diseases in humans.
Faseb J 1991;5(7):2052-60.
[15]
Traub W, Steinmann B. Structural study of a mutant type I col-
lagen from a patient with lethal osteogenesis imperfecta con-
taining an intramolecular disulide bond in the triple-helical
domain. FEBS Lett 1986;198(2):213-6.
[35]
Pack M, Constantinou CD, Kalia K, Nielsen KB, Prockop DJ.
Substitution of serine for alpha 1(I)-glycine 844 in a severe vari-
ant of osteogenesis imperfecta minimally destabilizes the triple
helix of type I procollagen. The effects of glycine substitutions
on thermal stability are either position of amino acid speciic.
J Biol Chem 1989;264(33):19694-9.
[16]
Lightfoot SJ, Holmes DF, Brass A, Grant ME, Byers PH, Kadler KE.
Type I procollagens containing substitutions of aspartate, arginine,
and cysteine for glycine in the pro alpha 1 (I) chain are cleaved
slowly by N-proteinase, but only the cysteine substitution intro-
duces a kink in the molecule. J Biol Chem 1992;267(35):25521-28.
[36]
Makareeva E, Mertz EL, Kuznetsova NV, et al. Structural hetero-
geneity of type I collagen triple helix and its role in osteogenesis
imperfecta. J Biol Chem 2008;283(8):4787-98.
[17]
Lightfoot SJ, Atkinson MS, Murphy G, Byers PH, Kadler KE.
Substitution of serine for glycine 883 in the triple helix of the
pro alpha 1(I) chain of type I procollagen produces osteogenesis
imperfecta type IV and introduces a structural change in the tri-
ple helix that does not alter cleavage of the molecule by procol-
lagen N-proteinase. J Biol Chem 1994;269(48):30352-7.
[37]
Xu K, Nowak I, Kirchner M, Xu Y. Recombinant collagen studies
link the severe conformational changes induced by osteogenesis
imperfecta mutations to the disruption of a set of interchain salt
bridges. J Biol Chem 2008;283(49):34337-44.
[38]
Persikov AV, Ramshaw JA, Kirkpatrick A, Brodsky B. Electrostatic
interactions involving lysine make major contributions to colla-
gen triple-helix stability. Biochemistry 2005;44(5):1414-22.
[18]
Forlino A, Keene DR, Schmidt K, Marini JC. An alpha 2(I) gly-
cine to aspartate substitution is responsible for the presence of
a kink in type I collagen in a lethal case of osteogenesis imper-
fecta. Matrix Biol 1998;17(8-9):575-84.
[39]
Cheng H, Rashid S, Yu Z, Yoshizumi A, Hwang E, Brodsky B.
Location of glycine mutations within a bacterial collagen protein
affects degree of disruption of triple-helix folding and confor-
mation. J Biol Chem 2011;286(3):2041-6.
[19]
Forlino A, Kuznetsova NV, Marini JC, Leikin S. Selective
retention and degradation of molecules with a single mutant
alpha 1(I) chain in the Brtl IV mouse model of OI. Matrix Biol
2007;26(8):604-14.
[40]
Bryan MA, Cheng H, Brodsky B. Sequence environment of
mutation affects stability and folding in collagen model pep-
tides of osteogenesis imperfecta. Biopolymers 2011;96(1):4-13.
[20]
Brodsky B, Persikov AV. Molecular structure of the collagen tri-
ple helix. Adv Protein Chem 2005;70:301-39.
[41]
Privalov PL. Stability of proteins. Proteins which do not present
a single cooperative system. Adv Protein Chem 1982;35:1-104.
[21]
Gauba V, Hartgerink JD. Synthetic collagen heterotrimers: struc-
tural mimics of wild-type and mutant collagen type I. J Am
Chem Soc 2008;130(23):7509-15.
[42]
Milchevsky JV, Ramensky VE, Esipova NG, Tumanyan VG,
Zorov BS. Molecular modelling of disease-causing single-
nucleotide polymorphisms in collagen. SAR QSAR Environ Res
2001;12(4):383-99.
[22]
Mooney SD, Huang CC, Kollman PA, Klein TE. Computed free
energy differences between point mutations in a collagen-like
peptide. Biopolymers 2001;58(3):347-53.
[43]
Gautieri A, Uzel S, Vesentini S, Redaelli A, Buehler MJ. Molecular
and mesoscale mechanisms of osteogenesis imperfecta disease in
collagen ibrils. Biophys J 2009;97(3):857-65.
[23]
Lee KH, Kuczera K, Banaszak Holl MM. The severity of
osteogenesis imperfecta: a comparison to the relative free
Search WWH ::




Custom Search