img
Braciale, T. J., Hahn, Y. S., and Burton, D. R. (2006). Adaptive immune
replicate demonstrate that viruses are capable of evolving
responses to viral infection. Chapter 10 in: Fields Virology, Fifth
more virulent forms if it is to their advantage. The end result is
Edition (D. M. Knipe and P. M. Howley, Eds. in chief), Philadelphia,
an interplay in which viruses and their hosts exist in an uneasy
Lippincott Williams & Wilkins, pp. 279­326.
equilibrium punctuated by the emergence of new viruses or
Cresswell, P., Ackerman, A. L., Giodini, A., Peaper, D. R., and Wearsch,
the spread of new epidemics accompanied by changes in the
P. A. (2005). Mechanisms of MHC class I-restricted antigen processing
and cross-presentation. Immunol. Rev. 207: 145­157.
immune system that protect against these viruses.
Janeway, C. A., Travers, P., Walport, M., et al. (2004). Immunobiology: The
The virulence of a virus for its host depends in part on
Immune System in Health and Disease, 6th Edition, London, Elsevier
the epidemiology of the virus, how it gets from one host
Science.
to another. The herpesviruses set up a lifelong infection in
Kuby, J. (1997). Immunology. New York, W. H. Freeman and Co.
which they are effectively transferred once per generation.
It is in the virus's interest not to incapacitate the host so that
Interferons and Other Cytokines
the host can pass it on 20 or 40 or 60 years later, and her-
pesviruses cause minor illness or no illness in most humans.
Buck, C. B., Day, P. M., Thompson, C. D., et al. (2006). Human α-
On the other hand, arboviruses must cause a viremia (virus
defensins block papillomavirus infection. Proc. Natl. Acad. Sci. U.S.A.
103: 1516­1521.
circulating in the blood) high enough to infect an insect tak-
Landolfo, S., Gribaudo, G., Angeretti, A., et al. (1995). Mechanisms of
ing a blood meal. Because many of these viruses are RNA
viral inhibition by interferons. Pharmacol. Ther. 65: 415­442.
viruses that encode relatively few functions to ablate the
Perry, A. K., Chen, G., Zheng, D., Tang, H., and Cheng, G. (2005). The
immune response, rapid and vigorous replication is required
host type I interferon response to viral and bacterial infections. Cell
to establish the viremia before immunity is established, and
Res. 15: 407­422.
Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R., and Paludan, S. R.
this is often harmful to the host because many cells are killed
(2006). Double-stranded RNA is produced by positive-strand RNA
in the process. To take another example, respiratory viruses
viruses and DNA viruses but not in detectable amounts by negative-
that are transmitted as aerosols or in respiratory secretions
strand RNA viruses. J. Virol. 80: 5059­5064.
must produce enough virus in the respiratory tract so that res-
piratory droplets expelled by coughing or sneezing will con-
How Viruses Interfere with the
tain sufficient virus to infect a person nearby. These viruses
are transmitted in epidemics that can spread rapidly and that
Immune Response
require close contact between individuals, and one infected
Alejo, A., Ruiz-Argüello, M. B., Ho, Y., et al. (2006). A chemokine-bind-
individual can infect dozens or even hundreds of others in
ing domain in the tumor necrosis factor receptor from variola (small-
a very short time. Thus these viruses need be transmissible
pox) virus. Proc. Natl. Acad. Sci. U.S.A. 103: 5995­6000.
only over a short period. Sexually transmitted viruses have
Blair, G. E., and Hall, K. T. (1998). Human adenoviruses: evading detection
by cytotoxic T lymphocytes. Semin. Virol. 8: 387­398.
different hurdles to overcome. Because the potential for sex-
Conzelmann, K.-K. (2005). Transcriptional activation of alpha/beta inter-
ual transmission is usually infrequent and one person inter-
feron genes: interference by nonsegmented negative-strand RNA
acts with a limited number of others, these viruses need to
viruses. J. Virol. 79: 5241­5248.
establish infections that last for long periods of time and that
Davis-Poynter, N. J., and Farrell, H. E. (1998). Human and murine cytome-
do not incapacitate the infected individual, at least not early
galovirus evasion of cytotoxic T lymphocyte and natural killer cell-
mediated immune responses. Semin .Virol. 8: 369­376.
in the infection.
Deitz, S. B., Dodd, D. A., Cooper, S., Parham, P., and Kirkegaard, K.
The close interplay between viruses and their hosts means
(2000). MHC I-dependent antigen presentation is inhibited by poliovi-
that the study of viruses continues to tell us much about the
rus protein 3A. Proc. Natl. Acad. Sci. U.S.A. 97: 13790­13795.
hosts. We now know much more about the adaptive immune
Esteban, D. J., and Buller, R. M. K. (2005). Ectromelia virus: the causative
system, the cytokine system, and apoptosis because of recent
agent of mousepox. J. Gen. Virol. 86: 2645­2659.
Gale, M. J., and Katze, M. G. (1998). Molecular mechanisms of interferon
studies that started with viruses. Continuing studies on
resistance mediated by viral-directed inhibition of PKR, the interferon-
viruses have told us much about the function of regulatory
induced protein kinase. Pharmacol. Ther. 78: 29­46.
genes and cancers. We are confident that the study of viruses
García-Sastre, A. (2004). Identification and characterization of viral antag-
will continue to teach us much about human biology.
onists of Type I interferon in negative-strand RNA viruses. Curr. Top.
Microbiol. Immunol. 283: 249­280.
Hilleman, M. R. (2004). Strategies and mechanisms for host and pathogen
survival in acute and persistent viral infections. Proc. Natl. Acad. Sci.
FUR THER READING
U.S.A. 101: 14560­14566.
Kalvakolanu, D. V. (1999). Virus interception of cytokine-regulated path-
General Summary of the Vertebrate
ways. Trends Microbiol. 7: 166­171.
Immune Response
Kash, J. C., Goodman, A. G., Korth, M. J., and Katze, M. G. (2006).
Hijacking of the host-cell response and translational control during
Biron, C. A., and Sen, G. C. (2006). Innate responses to viral infection.
influenza virus infection. Virus Res. 119: 111­120.
Chapter 9 in: Fields Virology, Fifth Edition (D. M. Knipe and P. M.
Katz, M. G., He, Y., and Gale, M., Jr. (2002). Viruses and interferon: a fight
Howley, Eds. in chief), Philadelphia, Lippincott Williams & Wilkins,
for supremacy. Nature Rev. Immunol. 2: 675­687.
pp. 249­278.
Klotman, M. E., and Chang, T. L. (2006). Defensins in innate antiviral
O'Brien, V. (1998). Viruses and apoptosis. J. Gen. Virol. 79: 1833­1845.
immunity. Nature Rev. Immunol. 6: 447­456.
Taylor, J. M., and Barry, M. (2006). Near death experiences: Poxvirus regu-
Lachmann, P. J., and Davies, A. (1997). Complement and immunity to
lation of apoptotic death. Virology 344: 1319­150.
viruses. Immunol. Rev. 159: 69­77.
Langland, J. O., Cameron, J. M., Heck, M. C., Jancovish, J. K., and Jacobs,
B. L. (2006). Inhibition of PKR by RNA and DNA viruses. Virus Res.
Toll-like Receptors
119: 100­110.
Leib, D. A., Machalek, M. A., Williams, B. R. G., Silverman, R. H., and
Finberg, R. W., and Kurt-Jones, E. A. (2004). Viruses and toll-like recep-
Virgin, H. W. (2000). Specific phenotypic restoration of an attenuated
tors. Microbes Infect. 6: 1356­1360.
virus by knockout of a host resistance gene. Proc. Natl. Acad. Sci.
Finberg, R. W., Knipe, D. M., and Kurt-Jones, E. A. (2005). Herpes simplex
U.S.A. 97: 6097­6101.
virus and Toll-like receptors. Viral Immunol. 18: 457­465.
Li, X.-D., Sun, L., Seth, R. B., Pineda, G., and Chen, Z. J. (2005). Hepatitis
Häcker, H., Redecke, V., Blagoev, B., et al. (2006). Specificity in Toll-like
C virus protease NS3/4A cleaves mitochondrial antiviral signaling pro-
receptor signalling through distinct effector functions of TRAF3 and
tein off the mitochondria to evade innate immunity. Proc. Natl. Acad.
TRAF6. Nature 439: 204­210.
Sci. U.S.A. 102: 17717­17722.
Iwasaki, A., and Medzhitov, R. (2004). Toll-like receptor control of the
Lichtenstein, D. L., Toth, K., Doronin, K., Tollefson, A. E., and Wold,
adaptive immune responses. Nature Immunol. 5: 987­995.
W. S. M. (2004). Functions and mechanisms of action of the adenovirus
Kawai, T., and Akira, S. (2006). TLR signaling. Cell Death Differ. 13:
E3 proteins. Int.. Rev. Immunol. 23: 75­111.
816­825.
Mahalingam, S., Meanger, J., Foster, P. S., and Lidbury, B. A. (2002).
Lee, J., Wu, C. C. N., Lee, K. J., et al. (2006). Activation of anti-hepatitis
The viral manipulation of the host cellular and immune environ-
C virus responses via Toll-like receptor 7. Proc. Natl. Acad. Sci. U.S.A.
ments to enhance propagation and survival: a focus on RNA viruses.
103: 1828­1833.
J. Leukcocyte Biol. 72: 429­439.
López, C. B., Yount, J. S., and Moran, T. M. (2006). Toll-like receptor-
Paulus, C., Krauss, S., and Nevels, M. (2006). A human cytomegalovirus
independent triggering of dendritic cell maturation by viruses. J. Virol.
antagonist of type I IFN-dependent signal transducer and activator of
80: 3128­3134.
transcription signaling. Proc. Natl. Acad. Sci. U.S.A. 103: 3840­3845.
Meylan, E., and Tschopp, J. (2006). Toll-like receptors and RNA helicases;
Poole, E., He, B., Lamb, R. A., Randall, R. E., and Goodbourn, S. (2002).
two parallel ways to trigger antiviral responses. Mol. Cell 22: 561­569.
The V proteins of simian virus 5 and other paramyxoviruses inhibit
O'Neill, L. A. J. (2005). Immunity's early-warning system. Sci. Am.
induction of interferon-β. Virology 303: 33­46.
January: 38­45.
Rosengard, A. M., Liu, Y., Nie, Z., and Jimenez, R. (2002). Variola virus
Schröder, M., and Bowie, A. G. (2005). TLR3 in antiviral immunity: key
immune evasion design: Expression of a highly efficient inhibitor of
player or bystander? Trends Immunol. 26: 462­468.
human complement. Proc. Natl. Acad. Sci. U.S.A. 99: 8808­8813.
Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu.
Seet, B. T., Johnston, J. B., Brunetti, C. R., et al. (2003). Poxviruses amd
Rev. Immunol. 21: 335­376.
immune evasion. Annu. Rev. Immunol. 21: 377­423.
Shchelkunov, S. N., Totmenin, A. V., Safronov, P. F., et al. (2002). Analysis
of the monkeypox virus genome. Virology 297: 172­194.
Vaccines
Smith, G. L., Symons, J. A., and Alcami, A. (1998). Poxviruses: interfering
with interferon. Semin. Virol. 8: 409­418.
Arvin, A. M., and Greenberg, H. B. (2006). New viral vaccines. Virology
Smith, S. A., and Kotwal, G. J. (2002). Immune response to poxvirus infec-
344: 240­249.
tions in various animals. Crit. Rev. Microbiol. 28: 149­185.
Bianchi, E., Liang, X., Ingallinella, P., et al. (2005). Universal influenza
Tortorella, D., Gewurz, B. E., Furman, M. H., et al. (2000). Viral subver-
B vaccine based on the maturational cleavage site of the hemagglutinin
sion of the immune system. Annu. Rev. Immunol. 18: 861­926.
precursor. J. Virol. 79: 7380­7388.
de Filette, M., Jou, W. M., Birkett, A., et al. (2005). Universal influenza A
vaccine: optimization of M2-based constructs. Virology 337: 149­161.
Apoptosis
Donnelly, J. J., Wahren, B., Liu, M. A., and Wahren, B. (2005). DNA vac-
cines: progress and challenges. J. Immunol. 175: 633­639.
Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and
Gerhard, W., Mozdzanowska, K., and Zharikova, D. (2006). Prospects for
modulation. Science 281: 1305­1308.
universal infleunza virus vaccine. Emerg. Infect. Dis. 12: 569­574.
Brydon, E. W. A., Morris, S. J., and Sweet, C. (2005). The role of apoptosis
Graham, B. S., and Crowe, J. E., Jr. (2006). Immunization against viral
and cytokines in influenza virus morbidity. FEMS Microbiol. Rev. 29:
diseases. Chapter 15 in: Fields Virology, Fifth Edition (D. M. Knipe
837­850.
and P. M. Howley, Eds. in chief), Philadelphia, Lippincott Williams &
Raff, M. (1998). Cell suicide for beginners. Nature 396: 119­122.
Wilkins, pp. 487­538.
Hirao, L., and Weiner, D. B. (2006). Advancing DNA vaccine technology.
Microbiol. Today 33(1): 24­27.
Jaffe, S. (2005). New rotavirus vaccines on the horizon. The Scientist
How Viruses Interfere with Apoptosis
February 15: 37­39.
Chinnadurai, G. (1998). Control of apoptosis by human adenovirus genes.
Lai, C.-J., and Monath, T. P. (2003). Chimeric flaviviruses: novel vaccines
Semin. Virol. 8: 399­408.
against dengue fever, tick-borne encephalitis, and Japanese encephali-
Hill, A. B., and Masucci, M. G. (1998). Avoiding immunity and apopto-
tis. Adv. Virus Res. 61: 469­509.
sis: manipulation of the host environment by herpes simplex virus and
Liu, M. A., Wahren, B., and Hedestam, G. B. K. (2006). DNA vaccines:
Epstein-Barr virus. Semin. Virol. 8: 361­368.
recent developments and future possibilities. Human Gene Ther. 17:
McFadden, G., and Barry, M. (1998). How poxviruses oppose apoptosis.
1051­1061.
Semin. Virol. 8: 429­442.
Mason, P. W., Shustov, A. V., and Frolov, I. (2006). Production and char-
Miller, L. K., and White, E. (Eds.) (1998). Apoptosis in virus infection.
acterization of vaccines based on flaviviruses defective in replication.
Semin. Virol. 8: No. 6.
Virology 351: 432­443.
Robinson, H. L., and Weinhold, K. J. (2006). Phase I clinical trials of the
He, L., and Hannon, G. J. (2004). MicroRNAs; small RNAs with a big role
National Institutes of Health vaccine research center HIV/AIDS candi-
in gene regulation. Nature Rev. Genet. 5: 522­531.
date vaccines. J. Infect. Dis. 194: 1625­1627.
Liu, J. D., Carmell, M. A., Rivas, F. V., et al. (2004). Argonaute 2 is the
Tesh, R. G., Travassos da Rosa, A. P. A., Guzman, H., Araujo, T. P.,
catalytic engine of mammalian RNAi. Science 305: 1437­1441.
and Xiao, S.-Y. (2002). Immunization with heterologous flaviviruses
Nair, V., and Zavolan, M. (2006). Virus-encoded microRNAs: novel regu-
protective against fatal West Nile encephalitis. Emerg. Infect. Dis. 8:
lators of gene expression. Trends Microbiol. 14: 169­175.
245­251.
Pfeffer, S., Zavolan, M., Grässer, F. A., et al. (2004). Identification of virus-
encoded microRNAs. Science 304: 734­736.
Schütz, S., and Sarnow, P. (2006). Interaction of viruses with the mamma-
RNAi
lian RNA interference pathway. Virology 344: 151­157.
Berkhout, B., and Haasnoot, J. (2006). The interplay between virus infec-
tion and the cellular RNA interference machinery. FEBS Lett. 580:
2896­2902.
Search WWH :
Custom Search
Previous Page
Viruses And Human Disease Topic Index
Next Page
Viruses And Human Disease Bookmarks
Home